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Abstract

This paper introduces new tight frames of curvelets to address the problem of find-
ing optimally sparse representations of objects with discontinuities along C2 edges.
Conceptually, the curvelet transform is a multiscale pyramid with many directions and
positions at each length scale, and needle-shaped elements at fine scales. These elements
have many useful geometric multiscale features that set them apart from classical mul-
tiscale representations such as wavelets. For instance, curvelets obey a parabolic scaling
relation which says that at scale 2−j , each element has an envelope which is aligned
along a ‘ridge’ of length 2−j/2 and width 2−j .

We prove that curvelets provide an essentially optimal representation of typical
objects f which are C2 except for discontinuities along C2 curves. Such representations
are nearly as sparse as if f were not singular and turn out to be far more sparse than the
wavelet decomposition of the object. For instance, the n-term partial reconstruction
fC

n obtained by selecting the n largest terms in the curvelet series obeys

‖f − fC
n ‖2

L2
≤ C · n−2 · (log n)3, n→∞.

This rate of convergence holds uniformly over a class of functions which are C2 except for
discontinuities along C2 curves and is essentially optimal. In comparison, the squared
error of n-term wavelet approximations only converges as n−1 as n → ∞, which is
considerably worst than the optimal behavior.

Keywords. Curvelets, wavelets, second dyadic decomposition, edges, nonlinear ap-
proximation, singularities, thresholding, Radon transform.
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1 Introduction

1.1 The Problem of Edges

Edges are prominent features of the visual world; from some points of view a visual scene
contains little of importance besides edges. In fact, neuroscientists have identified edge
processing neurons in the earliest and most fundamental stages of the processing pipeline
upon which mammalian visual processing is built. Edges are also ubiquitous in synthetic
and real digital imagery, and a great deal of technological research aims to find and represent
edges. Thus, in medical imaging, detecting and enhancing boundaries between different
cavities is of prime importance. Finally, edge-like phenomena exist outside vision, for
example in certain physical systems, where ‘shock fronts’ occur naturally. Research in
scientific computing concerns the efficient representation and propagation of such fronts.

This article is motivated by fundamental questions concerning the mathematical rep-
resentation of objects containing edges: what is the sparsest representation of functions
f(x1, x2) which contain smooth regions, but also edges? We give a quantitative content
to this question, by using a simple mathematical model of images, asking a fundamental
approximation-theoretic question about this model, and using harmonic analysis techniques
to answer the question. We construct and analyze a new tight frame for representing func-
tions f(x1, x2), and establish an essential optimality of this system. Underlying these results
is a mathematical insight concerning the central role, for the analysis and synthesis of ob-
jects with discontinuities along curves (i.e. ‘edges’), played by parabolic scaling, in which
analysis elements are supported in elongated regions obeying the relation width ≈ length2.

The theoretical results established here should be of considerable interest for a wide
variety of technological fields. We mention two specific areas where the implications seem
most immediate:

• Image Coding. Today the most advanced image coders are transform coders; these
typically apply a linear transform to the image data, yielding coefficients that are
then quantized. Our theoretical results suggest in a mathematically precise model
of image encoding that popular classical transforms such as cosine transforms and
wavelet transforms can be substantially outperformed by the new class of transforms
we describe here. Since those classical transforms underly JPEG and JPEG-2000,
this fact may be of substantial interest.

• Image Reconstruction. Digitally acquired data which are blurred, noisy, and indirectly
measured, are of interest in technological and scientific fields ranging from medical
imagery to extragalactic astronomy. Our theoretical results, see the companion paper
[8], show that, because images have edges, many of the standard approaches to im-
age restoration and enhancement (e.g. method of regularization, wavelet-vaguelette
decomposition) are suboptimal, particularly in very noisy situations; whereas, in our
mathematical model of image restoration, the new schemes we introduce are essen-
tially optimal.

In essence, in both areas, parabolic scaling ought to be extremely helpful in better
resolving the edgelike components of the images; it gives better accuracy in the vicinity of
edges while using many fewer terms in an approximation. When compared to non-parabolic
scaling methods like Fourier analysis and wavelets, this can lead to better compression in
image coding, and better image restoration in the presence of noise.
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1.2 Quantifying the Approximation Performance

To quantify the performance of various representations, we will take the viewpoint of non-
linear approximation. We consider as a model problem the case where typical objects are
functions of two variables with discontinuities along edges and which are otherwise smooth.
To make things concrete, consider representing in a Fourier basis a binary object f , i.e. the
indicator function of a set with a C2 boundary. Then the number of Fourier coefficients of
f exceeding 1/n in absolute value grows as rapidly as c · n2 as n→∞. This ‘rapid’ rate of
growth means that many different terms are needed to obtain good partial reconstructions.
Let fF

n be the best partial reconstruction obtained by selecting the n largest terms in the
Fourier series; then the squared error of such an n-term expansion would obey

‖f − fF
n ‖2

L2
� n−1/2, n→∞. (1.1)

The asymptotics are quite different if we now consider representing f in a nice wavelet
basis. For n tending to infinity, the number of coefficients above the threshold 1/n now
only grows as c · n and the best n-term wavelet approximation would obey

‖f − fW
n ‖2

L2
� n−1, n→∞, (1.2)

which is significantly better. Nevertheless, this is nowhere close to being optimal.
Despite the fact that wavelets have had a wide impact in image processing, they fail to

efficiently represent objects with edges for the simple reason that the wavelet transform does
not take advantage of the geometry of the underlying edge curve. Suppose that the edge
curve is of length one, say. Then at each fixed scale 2−j , there are about 2j wavelets which
interact with the edge yielding coefficients of size about 2−j . Although this is very crude,
this analysis is essentially correct and explains why the wavelet coefficients only decay like
1/n. In other words, using a wavelet basis we need about 2j coefficients to reconstruct the
frequency content of an edge up to the subband |ξ| ∼ 2j . In comparison, this paper will
exhibit a construction in which one can achieve a similar feat with only O(2j/2) coefficients!
The limitation here is that wavelets are non geometrical and do not exploit the regularity
of the edge curve. To obtain nearly optimal approximation rates, we need new multiscale
ideas and basis functions with a very different geometry.

In fact, one can easily imagine more geometrical means of approximations based on
adapted triangulations. Consider a dictionary of indicator functions of triangles with ar-
bitrary shapes and locations. Then it is quite clear [19] that for each n, there exists a
superposition of n-triangles fT

n =
∑n

i=1 1Ti with the property

‖f − fT
n ‖2

L2
� n−2, n→∞. (1.3)

These types of approximation are adaptive, and are of course very different from thresh-
olding ideas in a fixed basis. In this direction, it is important to underline the conceptual
problems with the foundations of such results. First, the best or near-best approximation
is the solution of a complicated and abstract minimization problem. How to construct such
approximations is totally unclear if not intractable. Second, these types of results hardly
lead to any kind of realistic implementation in any practical setting. When presented with
an array of pixel intensities, it is unclear how to extract an adapted triangulation. One
would perhaps need to perform some kind of edge detection which for complicated imagery
is already quite problematic. Although this is a very important issue, we choose not to
dwell further on this topic and simply refer the reader to the companion paper [7] which
contains a comprehensive discussion on this theme.
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Despite the lack of the constructive character of such results, we nevertheless find them
useful because they provide an objective performance benchmark.

1.3 Optimality

The asymptotic convergence rate (1.3) is actually the correct optimal behavior for approx-
imating general smooth objects having discontinuities along C2 curves. Consider an image
model E containig binary (‘black and white’) objects supported in the unit square, for which
the curvature of the boundary curve separating ‘black’ from ‘white’ is bounded by some
constant C.

• No orthogonal bases can yield approximation rates which are better than n−2. We
shall not give the argument here and simply say that this follows from information
and approximation theoretic arguments which may be found in [19] and [27].

• Even if one considers finite linear combinations of arbitrary dictionaries of waveforms
(which do not necessarily build up orthobases or near orthogonal systems), there is no
depth-search limited dictionary which can achieve a better rate than n−2, see [19]. By
depth-search limited, we suggest that we are allowed sequences of dictionaries whose
size grow polynomially in the number of terms to be kept in the approximation, see
also [7].

• No pre-existing basis comes even close to the optimal convergence rate. In fact, the
wavelet convergence rate (1.2) is the best published nonadaptive result.

These itemized facts raise a fundamental question: “is there is a basis which does nearly
this well?” That is, is there a basis or tight frame in which simple thresholding achieves
the optimal rate of convergence. This article argues that the answer is “yes.”

1.4 New Tight Frames of Curvelets

In this paper, we construct new tight frames of curvelets to address the problem of finding
optimally sparse representations of objects with discontinuities along C2 edges. These tight
frames are different from that introduced in [7] and are roughly defined as follows. We let
µ be the triple (j, `, k); here, j = 0, 1, 2, . . . is a scale parameter; ` = 0, 1, . . . 2j is an
orientation parameter; and k = (k1, k2), k1, k2 ∈ Z is a translation parameter. Introduce

1. the parabolic scaling matrix Dj

Dj =
(

22j 0
0 2j

)
, (1.4)

2. the rotation angle θJ = 2π · 2−j · `, with J indexing the scale/angle pair J = (j, `),

3. and the translation parameter kδ = (k1 · δ1, k2 · δ2) (see Section 2 for the numerical
values of the parameters δ1, δ2 > 0,).

With these notations, we define curvelets as functions of x ∈ R2 by

γµ(x) = 23j/2γ (DjRθJ
x− kδ) . (1.5)
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Here the waveform γ is smooth and oscillatory in the horizontal direction and bell-shaped
(nonoscillatory) along the vertical direction. (We will see that the waveform actually de-
pends on the scale parameter j but only very weakly). Continuing at this informal level of
discussion, it will be useful to think of γ as being roughly of the form γ(x1, x2) = ψ(x1)·ϕ(x2)
where ψ is a smooth wavelet and ϕ a smooth scaling function (in fact γ is not such a direct
product).

Hence, curvelet frame elements are obtained by anisotropic dilations, rotations and
translations of a collection of unit-scale oscillatory blobs. Some properties are immediate

• The parabolic scaling (1.4) yields an Anisotropy Scaling Law: the system is well-
localized in space and obeys approximately the relationships

length ≈ 2−j , width ≈ 2−2j

and, therefore, the width and length of a curvelet obey the anisotropy scaling relation

width ≈ length2.

• Directional Sensitivity: the elements are oriented in the co-direction θJ = π · ` · 2−j .
Identifying the curvelet width 2−2j with the scale, there are 2j directions at scale
2−2j ; that is,

# orientations = 1/
√

scale.

• Spatial Localization. For a given scale and orientations, curvelets are obtained by
two dimensional translations; those translations form a Cartesian grid with a spacing
proportional to the length in the direction θJ and width in the normal direction.

• Oscillatory Nature. Curvelets elements display oscillatory components across the
‘ridge’.

As in wavelet theory, we also have coarse scale elements which are of the form

ϕk1,k2(x) = ϕ(x− kδ), k1, k2 ∈ Z,

i.e. coarse scale curvelets are translates of a waveform ϕ(x1, x2) that we shall take to be
bandlimited and rapidly decaying.

One of the result of this paper is to show that one can select profiles ϕ and γ such that
the system (γµ)µ obeys the Parseval relation∑

µ

|〈f, γµ〉|2 = ‖f‖2
L2(R2), ∀f ∈ L2(R2). (1.6)

This equality says that (γµ)µ is a tight frame and standard arguments give the reconstruc-
tion formula

f =
∑

µ

〈f, γµ〉γµ, (1.7)

with equality holding in an L2-sense. The reconstruction formula says that one can analyze
and synthesize any square integrable function as a superposition of curvelet elements in a
very concrete way.
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f(x,y)

Figure 1: Typical element from our edge model.

1.5 Functions which are C2 Away from C2 Edges

We now formally specify a class of objects with discontinuities along edges which is inspired
by [18, 21, 19]. It is clear that nothing in the arguments below would depend on the specific
assumptions we make here, but the precision allows us to make our arguments uniform over
classes of such objects.

We follow [18] and introduce Star2(A), a class of indicator functions of sets B with C2

boundaries ∂B. In polar coordinates, we let ρ(θ) : [0, 2π) → [0, 1] be a radius function and
define B by x ∈ B iff |x| ≤ ρ(θ). In particular, the boundary ∂B is given by the curve

β(θ) = (ρ(θ) cos θ, ρ(θ) sin θ) (1.8)

The class of boundaries of interest to us are defined by

ρ ≤ ρ0, ‖ρ‖Ċ2 = sup |ρ′′(θ)| ≤ A. (1.9)

To fix ideas, take ρ0 = 1/10. We say that a set B ∈ Star2(A) if B ⊂ [0, 1]2 and if B is a
translate of a set obeying (1.8) and (1.9).

The geometrical regularity of the members of the class Star2(A) is useful; it forces very
simple interactions of the boundary with dyadic squares at sufficiently fine scales. We use
this to guarantee that ‘sufficiently fine’ has a uniform meaning for every B of interest.

The actual objects of interest to us are functions which are twice continuously differ-
entiable except for discontinuities along edges ∂B of sets in Star2(A). We define C2

0 (A)
to be the collection of twice continuously differentiable functions supported strictly inside
[0, 1]2.

Definition 1.1 Let E2(A) denote the collection of functions f on R2 which are supported
in the square [0, 1]2 and obey

f = f0 + f1 · 1B (1.10)

where B ∈ Star2(A) , and each fi ∈ C2
0 (A). We speak of E2(A) as consisting of functions

which are C2 away from a C2 edge.

Figure 1 gives a graphical indication of a typical element of E2(A).
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1.6 Sparsity and Nonlinear Approximation

Let f be an object which is C2 away from a C2 edge. The main result of this paper is that
the curvelet coefficient sequence (θµ)µ∈M of f is in some sense, as sparse as if f were not
singular.

Theorem 1.2 Let E2(A) be the collection (1.10) of objects which are C2 away from a C2

curve. Define |θ|(n) to be the n-th largest entry in the coefficient sequence (|θµ|)µ∈M in the
curvelet system. Then

sup
f∈E2(A)

|θ|(n) ≤ C · n−3/2 · (log n)3/2. (1.11)

There is a natural companion to this theorem. Let fC
n be the n-term approximation of

f obtained by extracting from the curvelet series (1.7) the terms corresponding to the n
largest coefficients. The approximation error obeys

‖f − fC
n ‖2

L2
≤

∑
m>n

|θ|2(m),

and, therefore, the rate of decay (1.11) gives the following result.

Theorem 1.3 Under the assumptions of Theorem 1.2, the n-term approximation fC
n ob-

tained by simple thresholding in a curvelet frame achieves

‖f − fC
n ‖2

L2
≤ C · n−2 · (log n)3. (1.12)

Simply put, ignoring log-like factors, there is no basis in which coefficients of an object
with an arbitrary C2 singularity would decay faster than in a curvelet frame. Moreover,
naive thresholding in a fixed curvelet frame achieves convergence rates rivaling those attain-
able by adaptive approximation procedures which would attempt to track the discontinuity;
a result that the companion paper [7] qualified as quite ’surprising.’ We quote from that
paper: “In short, in a problem of considerable applied relevance, where one would have
thought that adaptive representation was essentially more powerful than fixed nonadaptive
representation, it turns out that a new fixed nonadaptive representation is essentially as
good as adaptive representation, from the point of view of asymptotic n-term approximation
errors.”

1.7 Significance

The potential for sparsity is now well-understood for data compression, statistical estima-
tion [15, 22], etc., to the point that the sparsity concept has become a real paradigm in
certain research communities.

For instance, consider encoding a function f by the method of wavelet transform coding.
First, one quantizes its wavelet coefficients 〈f, ψλ〉 into integers kλ using a uniform quantum
q:

kλ = sgn(〈f, ψλ〉) · b|〈f, ψλ〉|/qc.

One encodes the position of the nonzero coefficients and the values of the nonzero coefficients
as bit strings by standard devices (run-length coding and so forth). Later, an approximate
reconstruction of f can be obtained from f̃q =

∑
qkλψλ. Here we retain the index q to

remind us that the quantization stepsize q controls the behavior of the algorithm. This
coding method has distortion δ(q) = ‖f− f̃q‖L2 ; by picking q appropriately, we can arrange
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that δ(q; f) = ε for any desired distortion level ε > 0. In return, the number of bits
required for a distortion level ε is the description length L(ε) = L(ε; f,Wavelets) for
wavelet transform coding. Of course for typical functions f , L(ε) →∞ as ε→ 0.

If we encode a function f of the above type—which is smooth away from C2 edges—by
wavelet transform coding, we get that the wavelet description length L(ε; g,Wavelets)
grows as ε → 0 at least as rapidly as c · ε−2. Because Fourier series are much denser than
wavelet expansions, the Fourier description length is significantly worst; L(ε; g,Fourier)
grows as ε→ 0 at least as rapidly as c · ε−4. Now a strategy identical to that developed in
[17] shows that one can exploit the sparsity (1.11) and develop a curvelet transform coder
based on simple ideas such as scalar quantization and run-length coding which ignoring log-
like factors, yields a curvelet description length L(ε; g,Curvelets) growing more slowly
than ε−1.

In fact, L(ε; g,Curvelets) is asymptotically nearly optimal in the sense that there is
no strategy which can encode elements taken from our edge models with fewer bits than
c · ε−1 as ε→ 0, see [19] for details.

Another implication concerns statistical estimation. Consider the problem of recovering
a function f(x1, x2) from noisy data. The function f to be recovered is assumed smooth
apart from a discontinuity along a C2 edge. We use the continuum white noise model
and observe y = f + n where n is white noise with noise level σ. Then a near corollary
of Theorem 1.2 gives that simple strategies based on the shrinkage of curvelet coefficients
yielding an estimator f̂ achieve—ignoring log-like factors—a Mean Squared Error (MSE)
obeying

sup
f∈F

E‖f̂ − f‖2
L2
� σ4/3, σ → 0.

In fact, this is essentially the optimal rate of convergence as the minimax rate scales like
σ4/3. In other words, there are no other estimating procedure which, in an asymptotic
sense, give fundamentally better MSEs. In comparison, wavelet shrinkage methods only
achieves a MSE which scales like σ as σ → 0.

The situation is a little different when one considers adaptive methods which somehow
try to estimate the location and size of the discontinuities. Edge detection is a delicate topic
and realistic existing methods which are amenable to rigorous optimality results are nearly
nonexistent (we are of course aware of [18]). The curvelet shrinkage approach avoids these
issues as it does not use edge detectors or any other problematic schemes. The algorithms
simply extracts the large curvelet coefficients.

1.8 Relationship with Other Curvelets

A previous article [7] used a radically different machinery to construct tight frames also
known under the name of curvelets. For clarity, we shall call the former tight frame curvelets
99. We now briefly review the curvelet 99 transform and explain how it operates on a square
integrable object f . This will make explicit the connections and differences with the frames
presented in this paper. Before we do so, we need to introduce orthonormal ridgelets. We
quote from [6]: “Let (ψj,k(t) : j ∈ Z, k ∈ Z) be an orthonormal basis of Meyer wavelets
for L2(R) [28], and let (w0

i0,`(θ), `= 0, . . . , 2i0−1; w1
i,`(θ), i ≥ i0, `= 0, . . . , 2i−1) be an

orthonormal basis for L2[0, 2π) made of periodized Lemarié scaling functions w0
i0,` at level i0

and periodized Meyer wavelets w1
i,` at levels i ≥ i0. (We suppose a particular normalization

of these functions). Let ˆψj,k(ω) denote the Fourier transform of ψj,k(t), and define ridgelets
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ρλ(x), λ = (j, k; i, `, ε) as functions of x ∈ R2 using the frequency-domain definition

ρ̂λ(ξ) = |ξ|−
1
2 ( ˆψj,k(|ξ|)wε

i,`(θ) + ˆψj,k(−|ξ|)wε
i,`(θ + π))/2 . (1.13)

Here the indices run as follows: j, k ∈ Z, ` = 0, . . . , 2i−1 − 1; i ≥ i0, i ≥ j. Notice the
restrictions on the range of ` and on i. Let λ denote the set of all such indices λ. It turns
out that (ρλ)λ∈Λ is a complete orthonormal system for L2(R2).”

The curvelet 99 transform makes use of multiscale partitions of unity to localize an
object in space. Let Q denote a dyadic square Q = [k1/2s, (k1 +1)/2s)× [k2/2s, (k2 +1)/2s)
and let Q be the collection of all such dyadic squares. The notation Qs will correspond to
all dyadic squares of scale s. Let wQ be a window centered near Q, obtained after dilation
and translation of a single w, such that the w2

Q’s, Q ∈ Qs, make up a partition of unity.
We define multiscale ridgelets by {ρQ,λ : s ≥ s0, Q ∈ Qs, λ ∈ Λ}

ρQ,λ = wQ TQρλ,

where
TQf = 2sf(2sx1 − k1, 2sx2 − k2).

The discrete curvelet 99 transform also employs a bank of filters (P0f,∆1f,∆2f, . . . ) with
the property that the passband filter ∆s is concentrated near the frequencies [2s; 22s+2] e.g.
∆s(f) = Ψ2s ∗ f , Ψ̂2s(ξ) = Ψ̂(2−2sξ). Note that the coronization is nonstandard.

With these preliminaries, the curvelet 99 transform operates as follows.

• Subband Decomposition. The object f is filtered into subbands:

f 7→ (P0f,∆1f,∆2f, . . . ).

• Smooth Partitioning. Each subband is smoothly windowed into “squares” of an ap-
propriate scale:

∆sf 7→ (wQ∆sf)Q∈Qs .

• Renormalization. Each resulting square is renormalized to unit scale

gQ = (TQ)−1(wQ∆sf), Q ∈ Qs.

• Ridgelet Analysis. Each square is analyzed in the orthonormal ridgelet system.

αµ = 〈gQ, ρλ〉, µ = (Q,λ).

With our notations, we have available a formula for curvelet 99 frame elements, i.e. αµ =
〈f, γµ〉 with

γµ = ∆sρQ,λ, µ = (λ ∈ Λ, Q ∈ Qs).

By linking the filter passband |ξ| ≈ 22s to the scale of spatial localization 2−s, we
impose that (1) most curvelets 99 are negligible in norm (most multiscale ridgelets do not
survive the bandpass filtering ∆s); (2) the nonnegligible curvelets 99 obey length ≈ 2−s

while width ≈ 2−2s. In short, the system obeys approximately the scaling relationship

width ≈ length2.

9



Note: it is at this last step that the 22s coronization scheme comes fully into play. Despite
exhibiting novel and interesting properties, the original curvelet construction presents some
disadvantaging features we now describe.

First, the construction involves a seven-index structure µ = (s, k1, k2; j, k; i, `, ε) whose
indices include parameters for scale s, location K = (k1, k2), ridge scale j, ridge location
k, angular scale i ≥ max(j, i0), angular location `, and a gender token ε. In addition, we
already mentioned that the scaling ratio width ≈ length2 is actually a distortion of the
reality. In truth, curvelets 99 assume a wide range of aspect ratios—only their energy
decays as the scaling ratio is increasingly less parabolic. The geometry and aspect ratio of
orthonormal ridgelets is itself unclear as they are not true ridge functions. This and other
facts together with the complicated index structure makes any kind of mathematical and
quantitative analysis especially delicate, see for instance the structure of the proof in [8].
For example, when proving results about the sparsity sequence one has to worry about a
myriad of coefficients which may sometimes be quite daunting.

In contrast, the new definition exhibits a much simpler structure as it is indexed by
only three parameters; namely, scale, orientation (angle) and location—a byproduct being
that mathematical analysis is then considerably simpler. Easier manipulation is certainly
highly desirable but we would like to emphasize that the alteration is uncompromising;
every published ‘curvelet result’ would hold true with our new system and we are simply
not aware of any significant mathematical result –starting with the main result of this
paper– which would hold true for one system and not for the other.

Second, the curvelet 99 transform is in some sense a lapped transform as it involves
spatial localization with multiscale windows. In practical settings, to overcome blocking
effects, one would need to use overlapping windows, thereby, increasing the redundancy
of a digital implementation. The new curvelet transform, however, does not exhibit this
phenomenon and suggests a new digital implementation which shall be discussed briefly in
Section 9.

In short, we believe that our new tight frames yields a system which improves upon the
original construction while obeying its philosophy.

1.9 Inspiration and Relation to Other Work

Underlying our work is the inspiration of the original curvelet transform as already dis-
cussed. Of interest here, however, is the connection between applied harmonic analysis and
a central problem in approximation theory which is new. Indeed, this paper gives the first
proof of the optimality result for otherwise smooth objects with edges although results like
Theorem 1.2 have been claimed without proofs elsewhere [7].

The ideas underlying the curvelet transform are also loosely related with the theory
of affine wavelets. Several researchers [1, 26] have proposed to study the decompositions
of objects as superposition of affine wavelets of the form ψ(Ax + b), where A ∈ GL(R2)
and b ∈ R2. This literature is mainly about continuous transformation and is connected
to the theory of square-integrable group representations [11]. Here, we suggest studying
representations where A is of the form DjRθ`

, with Dj a parabolic scaling and rotation
matrices with an angular step proportional to the square-root of the scale. First, the
particular geometry of curvelets does not allow the identification of the parameterization
with a linear group representation. And second, guided by the theory of wavelets, we
are especially interested in obtaining discrete representations, namely tight frames, with
provably optimal approximation properties.
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There are deep connections between the curvelet transform and ideas from the field
of mathematical analysis. In the seventies, Fefferman [23, 36] studied the boundedness of
Riesz spherical means and introduced the so-called Second Dyadic Decomposition (SDD).
The SDD is a principle for localizing objects in the frequency plane which goes beyond
the classical Littlewood-Paley theory [25]. In fact, curvelets imply a tiling of the frequency
plane which is that suggested by SDD, see Section 2 and Figure 3 for details. We would
also like to remark that in the early nineties, SDD proved to be a very useful tool for the
study of Fourier Integral Operators, see [36] and references therein.

Finally, we recently became aware of the work of Do and Vetterli on contourlets which
is also directly inspired by the curvelet transform. We will comment on this line research
in the discussion section.

2 Second Generation of Curvelets

This section introduces new tight frames we shall call ’curvelets.’ Unlike the original curvelet
transform [7], this construction does not use ridgelets.

2.1 Scale/Angle Localization

For each pair (j, `), j ≥ 0 and ` = 0, 1, 2, . . . , 2j − 1, we let νj,` be the angular window
νj,`(θ) = ν(2jθ−π`). Note that for ` = 0, 1, . . . , 2j −1, νj,`(θ+π) = νj,`+2j (θ). Then define
the symmetric window χj,`(ξ) in the polar coordinates system by

χj,`(ξ) = w(2−2j |ξ|) (νj,`(θ) + νj,`(θ + π)) . (2.1)

Here, we will assume that ν is an even, C∞ angular window which is supported on
[−π, π] and obeys

|ν2(θ)|2 + |ν2(θ − π)|2 = 1, θ ∈ [0, 2π), (2.2)

where in the above equation, it is understood that we take the 2π-periodization of the
function ν, see Figure 2. It is not hard to deduce from our assumptions that for each j ≥ 0,

2j+1−1∑
`=0

|ν(2jθ − π`)|2 = 1, (2.3)

where again we have assumed 2π-periodization of the translates ν(2jθ − π`).
As for the radial window, we will suppose that w is compactly supported and obeys

|w0(t)|2 +
∑
j≥0

|w(2−2jt)|2 = 1, t ∈ R. (2.4)

A possible choice is to select w as in the construction of Meyer wavelets [28, 30]. With v
a C∞ window whose support is included in [2π/3, 8π/3], Meyer introduces the partition of
unity

|v0(t)|2 +
∑
j≥0

|v(2−jt)|2 = 1, t ≥ 0;

here, v0 is a C∞ window which is identically equal to one on [0, 2π/3) and vanishes on
[4π/3,∞). Define w as

|w(t)|2 = |v(t)|2 + |v(t/2)|2, w0(t) = v0(t). (2.5)

11
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Figure 2: Basic angular window.

Then w obeys (2.4). Note that w is smoothly increasing on the interval [2π/3, 4π/3], is
constant and equal to one on [4π/3, 8π/3] and smoothly decreasing on [8π/3, 16π/3]. In
the remainder of this paper, we will assume this special choice of window.

Put χ2
0(ξ) = w2

0(|ξ|) + w2(|ξ|)2. For j ≥ 1, νj,`(θ) and νj,`(θ + π) have non-overlapping
supports and, therefore, (2.3) and (2.4) give that the family (χj,`) is a family of orthogonal
and compactly supported windows in the sense that

|χ0(ξ)|2 +
∑
j≥1

2j−1∑
`=0

|χj,`(ξ)|2 = 1. (2.6)

We will use such windows to localize the Fourier transform near symmetric wedges of length
about 22j and width about 2j . Indeed, χj,` is localized near the symmetric wedge

Wj,` = {±ξ, 22j ≤ |ξ| ≤ 22(j+1), |θ − π · ` · 2−j | ≤ π

2
2−j}, (2.7)

and note that for each `, χj,` is obtained from χj,0 by applying a rotation. Figure 3 gives
a graphical representation of theses wedges and associated tiling.

2.2 New Tight Frames of Curvelets

We now introduce some notations that we will use throughout the remainder of this article.
We put J to be the pair of indices J = (j, `), j ≥ 0, ` = 0, 1, . . . , 2j − 1 and let θJ =
π · ` · 2−j . Next, we let MJ denote the set of coefficients µ = (j, `, k) with a fixed value of
the scale/angle pair J = (j, `).

For each j ≥ 1, the support of w(2−2j |ξ|)v(2jθ) is contained in the rectangle Rj =
I1j × I2j where

I1j = {ξ1, tj ≤ ξ1 ≤ tj + Lj}, I2j = {ξ2, |ξ2| ≤ lj/2};

Rj is symmetric around the axis θ = 0. We will write the length Lj and width lj as
Lj = δ1π22j and lj = δ22π2j . It is not difficult to verify that our assumptions about

12
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Figure 3: Curvelet Tiling of the Frequency Plane. In the frequency domain, curvelets are
supported near symmetric ‘parabolic’ wedges. The shaded area represents such a generic
wedge.

localizing windows imply that δ1 and δ2 obey δ1 = 14/3(1 + O(2−j)) and δ2 = 10π/9
respectively.

We let Ĩ1j be ±I1j and set R̃j = Ĩ1j × I2j . It is well-known that eiπ(k1+1/2)ξ1/Lj/
√

2Lj ,
k1 ∈ Z, is an orthobasis for L2(Ĩ1j). Since ei2πk2ξ2/lj/

√
lj is an orthobasis for L2(I2j), the

sequence (uj,k)k∈Z2 defined as

uj,k(ξ1, ξ2) =
2−3j/2

2π
√
δ1δ2

ei(k1+1/2)2−2jξ1/δ1 eik22−jξ2/δ2 , k1, k2 ∈ Z, (2.8)

is then an orthobasis for L2(R̃j).
We are now in position to introduce curvelets using the frequency-domain definition.

Letting RθJ
be the rotation by θJ , we define

γ̂µ′(ξ) = (2π) · χJ(ξ)uj,k(R∗
θJ
ξ), µ′ = (j, `, k). (2.9)

With the same notation as in Section 1, we also define coarse scale curvelets γ̂µ0(x) =
(2π) ·χ0(ξ)uk(ξ) where uk(ξ) = (2πδ0)−1 ·ei(k1ξ1/δ0+k2ξ2/δ0). Here, δ0 is chosen small enough
for (uk)k∈Z2 to be an orthobasis for L2 functions with a compact support containing that
of χ0, e.g. δ0 = 32/3.

Observe that ∑
µ∈MJ

|〈F, γ̂µ〉|2 = (2π)2 ·
∫
|F (ξ)|2|χJ(ξ)|2 dξ

since by construction (ujk(R∗
θJ
ξ))k is an orthobasis over the support of χJ . It then follows

from (2.6) that for any F ∈ L2(R2),∑
µ

|〈F, γ̂µ〉|2 = (2π)2 · ‖F‖2
L2

13



and, therefore, γ̂µ is a tight frame for L2(R2). In conclusion, the Plancherel formula gives
that (γµ)µ∈M obeys ∑

µ

|〈f, γµ〉|2 = ‖f‖2
L2(R2). (2.10)

This last equality says (γµ)µ∈M is a tight frame and standard arguments imply that the
decomposition (1.7) holds.

We would like to remark that the construction presented here was rapidly introduced
by Candès and Guo in [9]. Since the redaction of that paper, Candès became aware of the
work of Smith. In [32], Smith introduces a tight frame which is nearly identical to that
described above for the purpose of studying parametrices of general hyperbolic equations.

2.3 Space-Side Picture

The point of our construction is that curvelets are real-valued objects. Indeed, let γj be

the inverse Fourier transform of 2−3j/2
√

δ1δ2
χj,0(ξ)e

i
2−2jξ1

2δ1 . This function is real-valued and

γj,0,k(x) = γj(x1 − 2−2jk1/δ1, x2 − 2−jk2/δ2).

Now, the envelope of γj is concentrated near a vertical ridge of length about 2−j and width
2−2j . Define γ(j) by

γj(x) = 23j/2γ(j)(Djx)

where Dj is the diagonal matrix

Dj =
(

22j 0
0 2j

)
. (2.11)

In other words, the envelope γ(j) is supported near a disk of radius about one, and owing to
the fact that χj,0 is supported away from the axis ξ1 = 0, γ(j) oscillates along the horizontal
direction. In short, γ(j) resembles a 2-dimensional wavelet of the form ψ(x1)ϕ(x2) where ψ
and ϕ are respectively father and mother-gendered wavelets. Let kδ be the Cartesian grid
(k1/δ1, k2/δ2). With these notations,

γj,0,k(x) = 23j/2γj(Djx− kδ).

and the relationship γj,`,k(ξ) = γj,0,k(R∗
θJ
ξ) gives

γµ(x) = 23j/2 γ(j)(DjR
∗
θJ
x− kδ). (2.12)

Hence, we defined a tight frame of elements which are obtained by anisotropic dilations,
rotations and translations of a collection of unit-scale oscillatory blobs. Curvelets occur at
all dyadic lengths and exhibit an anisotropy increasing with decreasing scale like a power
law; curvelets obey a scaling relation which says that the width of a curvelet element is
about the square of its length; width ∼ length2. Conceptually, we may think of the curvelet
transform as a multiscale pyramid with many directions and positions at each length scale,
and needle-shaped elements (or ‘fat’ segments) at fine scales.

14



2.4 Split At Every at Other Scale

Variations about the definition are of course possible. For instance, note that in the fre-
quency plane, our tight-frames are supported near coronae of the form {π22j ≤ |ξ| ≤
π22(j+1)}. This coronization is non-standard; these are not dyadic coronae as in wavelet
theory. It is, of course possible to adapt the construction and define dyadic ’curvelets’ by
choosing windows of the form

χj,`(ξ) = w(2−j |ξ|)
(
νbj/2c,`(θ) + νbj/2c,`(θ + π)

)
. (2.13)

The exact same construction works with this choice of windows and we conclude this section
with a brief summary of the main points of the curvelet transform:

• We decompose the frequency domain into dyadic annuli |x| ∈ [2j , 2j+1).

• We decompose each annulus into wedges θ = π` · 2−j/2. That is, we divide at every
other scale as shown on Figure 3.

• We use oriented local Fourier bases on each wedge.

Important remark. In the remainder of this paper, we will assume this special choice
so that at scale 2−j , curvelets have length about 2−j/2 and width 2−j and which in the
frequency plane live near the dyadic subband |ξ| ∈ [π ·2j , π ·2j+1]. We find this choice more
consistent with the standard literature which emphasizes partitions of the frequency plane
near dyadic subbands instead of coronae of the form [π · 22j , π · 22j+2].

3 Geometry and Tilings: Ridgelet Packets

The previous section makes clear that there is a general machinery for designing tight
frames. Instead of considering smooth segmentations of each subband into a fixed number
of wedges, i.e. roughly 2j/2, we might consider arbitrary dyadic segmentations and thereby
design tight frames with arbitrary aspect ratios at arbitrary scales. When the number of
segmentations is (1) independent of scale, we essentially obtain tight frames of wavelet-like
elements or steerable wavelets [31] (2) increasing like 1/

√
scale, we obtain tight frames of

curvelets, and (3) increasing like 1/scale, we obtain tight frames of ridgelets [2, 6].
In [24], the authors followed this organization principle and constructed a family of

tight frames they call ridgelet packets. One problem with this work is that the family of
tight frames or orthobases they exhibit is missing a key ingredient, a translation parameter,
which may limit their applicability. In response to this, the ideas we exposed in the previous
section have of course an explicit translation index.

4 Why Does This Work?

Theorem 1.2 claims that the curvelet coefficients of an object which is singular along a C2

curve but otherwise smooth decay at nearly the rate n−3/2. This section presents a heuristic
argument which explains the 3/2 exponent.
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Figure 4: Schematic decomposition of a subband. The top figures represents an object with
an edge and that same object after applying a bandpass filter which keeps details at scale
2−j . The bottom picture represents a bandpassed edge fragment together with the three
types of curvelets.

4.1 Heuristic Argument

Curvelets are not compactly supported. However, at scale 2−j , they are of rapid decay
away from a ’ridge’ of length about 2−j/2 and width 2−j so that we can talk about such
a ridge as being their effective support. With this in mind, curvelet coefficients come in
essentially three types.

1. Type A. Those curvelets whose essential support does not overlap with the disconti-
nuity.

2. Type B. Those curvelets whose essential support overlap with the discontinuity but
are not tangent to the singularity.

3. Type C. Those curvelets which overlap with the singularity and are nearly tangent
to the singularity.

These three types are schematically represented on Figure 4. We will argue that coefficients
of type A and B are in some sense ’negligible.’

First, coefficients of type A do not ‘feel’ the singularity and are basically those one
would collect if we were to analyze a banal smooth, i.e. C2, function. The decay exponent
of these coefficients is 3/2 which is that of the coefficients of an arbitrary C2 function–a
fact which will be formally established in Section 8. Note that this decay rate is that one
might actually expect as this is also the rate of other classical expansions such as Fourier
or wavelet series. Therefore, from the point of view of smooth C2 functions, curvelets are
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as good as Fourier or wavelet bases. To understand this phenomenon, observe that at scale
2−j , curvelet coefficients isolate details of length 2−j –to employ a terminology borrowed
from the wavelet literature. Let ∆j be a bandpass filter which extracts frequencies near
the dyadic subband 2j ≤ |ξ| ≤ 2j+1 and is identically equal to one over the support of γ̂µ.
From ∆j(γµ) = γµ, it follows that

θµ = 〈∆jf, γµ〉.

Effectively, the bandpass object ∆jf is nearly vanishing everywhere except along a ridge of
width about 2−j –the width of the filter ∆j– and whose spatial position of course coincides
with that of the underlying edge. Figure 4 schematically represents this bandpassed image.
Then coefficients of type A are negligible simply because ∆jf nearly vanishes over the
essential support of those curvelets.

Second, coefficients of type B are negligible because of the finer frequency localization
of curvelet elements. Consider a portion of a bandpassed edge as illustrated in Figure
5 which has been spatially localized with a smooth window of radius about 2−j/2. In
the frequency domain, the bandpassed edge fragment is supported near a wedge whose
orientation is orthogonal to that of the edge. This is interesting because we have seen that
in the frequency domain, curvelets are supported near dyadic wedges of length 2j and width
2j/2, where again the orientations of such wedges are normal to the spatial orientation of
our curvelets. Figure 5 represents the essential support of the bandpassed edge fragment
and that of a curvelet. Then unless the curvelet orientation is nearly parallel to the edge,
these wedges are disjoint and associated coefficients are small.

In short, coefficients of type A are small because the spatial supports of the edge and of
the curvelet do not overlap whereas coefficients of type B are small because their frequency
support are disjoint. This ‘microlocalization’ is what actually explains the sparsity of
curvelet expansions of objects with edges.

We now focus our attention on the last group of coefficients, namely, coefficients of type
C. The singularity is a C2 curve of finite length and it is clear that for a fixed scale 2−j ,
there are at most O(2−j/2) coefficients of such type. We now estimate the size of each
coefficient of type C. We have

|θµ| = |〈f, γµ〉| ≤ ‖f‖L∞ · ‖γµ‖L1 .

Curvelets are L2 normalized so that ‖γµ‖L2 ≤ 1 and essentially supported in a box of
side-length 2−j/2 and width 2−j . Therefore, they obey

‖γµ‖L1 ≤ B · 2−3j/4,

uniformly over the index µ. (Note that this easily and rigorously follows from the definitions
(2.9) or (2.12).) Since f is a bounded function, the coefficients θµ then verify the a priori
estimate

|θµ| ≤ B · 2−3j/4 · ‖f‖L∞ . (4.1)

To summarize, at each scale 2−j , we have O(2j/2) coefficients of type C which are
bounded by C ·2−3j/4. Assuming that the other coefficients (of type A and B) are negligible,
the nth largest coefficient |θ|(n) is then bounded by

|θ|(n) ≤ C · n−3/2.
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Figure 5: Microlocal behavior. The left figure is a spatial representation of a bandpassed
edge fragment and of a curvelet (of type B) while the right figure portrays its frequency
representation. The shaded area represents the essential frequency support of the band-
passed edge fragment while the curvelet is supported on the wedge centered around the
radial line.

Further, note that the above decay would also give the O(n−2) convergence rate for the
nonlinear n-term approximation fn defined by keeping the n largest term in the curvelet
expansion as in Theorem 1.3. Indeed, fn would obey

‖f − fn‖2
L2
≤

∑
m>n

|θ|2(m) ≤ C · n−2.

4.2 Necessary Refinements

The above arguments only suggest why we may expect 3/2-exponent and a careful proof
should take into account several important facts.

• First, curvelets are not compactly supported and, therefore, it is inaccurate to claim
that curvelets of type A do not feel the singularity – only their rapid spatial decay
will control the ‘edge effect’ as the distance between the edge curve and the center of
the curvelets increases.

• Second, it is inaccurate to claim that the frequency support of an edge does not
overlap with that of a curvelet if they are not parallel. A rigorous argument should
articulate this fact and quantify the overlap. In some sense, curvelet coefficients decay
as the angle between their orientation and that of the edge increases; quantifying this
phenomenon with the best possible accuracy is the central part of the proof.
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5 Architecture of the Proof

In this section, we prove Theorem 1.2, our main result. However, the proof relies on a key
estimate which is the object of a separate section.

With the notations of Section 2, we let Mj be the set of indices (j, `, k), ` = 0, 1, . . . and
k ∈ Z2 so that (γµ)µ∈Mj is the set of all curvelets at scale 2−j . Abusing notation slightly,
let θj denote the subsequence of coefficients (θµ)µ∈Mj .

To measure the sparsity of a sequence (θn), we will use the weak-`p or Marcinkiewicz
quasi-norm, defined as follows: let |θ|(n) be the nth largest entry in the sequence (|θn|); we
set

|θ|w`p = sup
n>0

n1/p|θ|(n). (5.1)

There are other equivalent definitions; for instance the weak-`p norm may also be defined
as

sup
ε>0

#{n, |θn| > ε} · εp.

Note that the latter definition shows that the weak-`p norm obeys |θ|w`p ≤ ‖θ‖`p . Equipped
with this definition, the main result of this section is as follows.

Theorem 5.1 The sequence θj obeys

‖θj‖w`2/3
≤ C, (5.2)

for some constant C independent of scale.

Fix the scale parameter j. To analyze the coefficient sequence of an object f at a given
scale 2−j , we first smoothly localize this function near dyadic squares with a prescribed
radius. We define a partition of unity (wQ)Q∈Q∑

Q∈Q
wQ(x) = 1,

so that with the index Q indicating a dyadic square of the form Q = [k1/2j/2, (k1+1)/2j/2)×
[k2/2j/2, (k2 + 1)/2j/2), by wQ = w(2j/2x1 − k1, 2j/2x2 − k2). Here w is a nonnegative C∞

function vanishing outside of the square [−1, 1], say. We use this partition to smoothly
localize the function f near each dyadic square Q and define fQ by

fQ = f · wQ.

Note how the scale of the dyadic squares depends upon the scale 2−j ; we use dyadic squares
of sidelength about the length of curvelets. For µ ∈ Mj and each dyadic square Q, define
θQ to be the curvelet coefficient sequence of fQ, i.e.

θQ,µ = 〈fQ, γµ〉, µ ∈Mj .

Note the restriction on µ, namely, µ ∈ Mj . Our strategy is simply to establish a series
of results about the sparsity of the curvelet coefficient sequence θQ and combine them to
derive our claim (5.2).
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5.1 Partition of Dyadic Squares

The sequences θQ of course exhibit a very different behavior depending on whether or
not the edge curve has a nonempty intersection with the support of wQ. Accordingly, we
partition the collection of dyadic squares Q into two sets Q0 and Q1 and define Q0 to be
the collection of those squares such that the edge curve intersects with the support of wQ.
Clearly, the cardinality of Q0obeys

|Q0| ≤ A0 · 2j/2, (5.3)

for some constant A0 independent of scale. Note that since we assume f to be compactly
supported, there is a maximum of 2j +4 ·2j/2 squares for which fQ is possibly nonvanishing.
We prove two results.

Theorem 5.2 Let Q be a dyadic square such that Q ∈ Q0. The curvelet coefficient sequence
θQ of fQ obeys

‖θQ‖w`2/3
≤ C · 2−3j/4, (5.4)

for some constant C independent of Q.

Theorem 5.3 Let Q be a dyadic square such that Q ∈ Q1. The curvelet coefficient sequence
θQ of fQ obeys

‖θQ‖w`2/3
≤ C · 2−3j/2,

for some constant C independent of Q. Actually, the stronger inequality ‖θQ‖`2/3
≤ C·2−3j/2

also holds.

5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 is a simple consequence of Theorems 5.2 and 5.3. Recall the
p-triangle inequality for weak-`p, p ≤ 1,

‖a+ b‖p
w`p

≤ ‖a‖p
w`p

+ ‖b‖p
w`p

.

Since θj =
∑

Q θQ, we have

‖θj‖2/3
w`2/3

≤
∑
Q

‖θQ‖2/3
w`2/3

≤ |Q0| · sup
Q0

‖θQ‖2/3
w`2/3

+ |Q1| · sup
Q1

‖θQ‖2/3
w`2/3

The claim follows from Theorems 5.2 and 5.3 together with the earlier observation |Q0| ≤
A0 · 2j/2 and |Q1| ≤ ·2j + 4 · 2j/2.

5.3 Proof of Theorem 1.2

The proof of Theorem 1.2 now easily follows from Theorem 5.1. Indeed, observe that, on
the one hand, the latter theorem established that

# {µ ∈Mj , |θµ| > ε} ≤ C · ε−2/3,

and on the other, a previous section argued that there exists a constant B with the property

|θµ| = |〈f, γµ〉| ≤ B · 2−3j/4 · ‖f‖L∞ .
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As a consequence, there is a scale jε such that for each j ≥ jε, |θµ| < ε. Formally,

B · 2−3j/4 · ‖f‖L∞ < ε⇒ # {µ ∈Mj , |θµ| > ε} = 0;

thus, the number of scales j such that # {µ ∈Mj , |θµ| > ε} is possibly nonzero is bounded
by

3/4 ·
(
log2(ε

−1) + log2(‖f‖∞) + log2(B)
)
≤ log2(ε

−1),

for ε sufficiently small. We then showed that

# {µ ∈M, |θµ| > ε} ≤
∑

j

# {µ ∈Mj , |aµ| > ε} ≤ C · ε−2/3 · log(ε−1),

which is what we sought. Theorem 1.2 is proved.

5.4 The Coarse Scales

The careful reader will point out that we have not treated the coarse scale coefficients. At
coarse scales, curvelets are of the form ϕ(x1 − k1 · δ, x2 − k2 · δ). Since ϕ is of rapid decay,
i.e. for each m ≥ 0, ϕ obeys ϕ(x) ≤ Cm(1 + |x|)−m, and f is supported on [0, 1]2, standard
arguments give that for each m ≥ 0, these coarse scale coefficients obey

|θk1,k2 | ≤ Cm(1 + |k|)−m,

for some constant Cm. Hence, their `p summability is a not an issue.

6 Fourier Analysis of Edge Fragments

6.1 Edge Fragments

Suppose we are given an object with an edge along a C2 curve. We window the object,
multiplying by wQ(x) = w(2j/2x − k), where w is smooth and compactly supported with
support included in [−1, 1]2. We then translate the domain so that the resulting object is
supported near the origin in a set contained in the square −2−j/2 ≤ x1, x2 ≤ 2−j/2. We
will call the result an edge fragment.

We suppose that the scale 2−j is small enough such that over the support of wQ,
the edge curve may be parameterized as a graph either of the form (x1, x2 = E(x1)) or
(x1 = E(x2), x2). Indeed, the edge has a very simple interaction with dyadic squares
at sufficiently fine scales; for j ≥ j0, the sidelength 2−j/2 of a square is too short to
prevent one of the aforementioned parameterizations. (Here, j0 may be a function of the
maximum curvature of our edge curve.) Assume without loss of generality that the latter
parameterization holds; then an edge fragment is a function of the form

f(x1, x2) = w(2j/2x1, 2j/2x2)g(x1, x2)1{x1≥E(x2)}. (6.1)

To make things concrete, we suppose that the edge goes through the origin and that at this
point, its tangent is pointing in the vertical direction, i.e.

E(0) = 0, E′(0) = 0. (6.2)
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Figure 6: Schematic representation of an edge fragment and associated notation.

We would like to emphasize that this is not a loss of generality and that nothing in the
below arguments depends on this specific assumption; see the discussion at the end of this
section. It follows that E deviates little from zero:

sup
|x2|≤2−j/2

|E(x2)| ≤
1
2
· sup
|x2|≤2−j/2

|E′′(x2)| · 2−j .

In this sense, the edge curve (E(x2), x2), |x2| ≤ 2−j/2, is very nearly straight. Figure 6
gives a sketch of an edge fragment.

6.2 Fourier Analysis

We wish to study the localization of the Fourier transform of an edge fragment. Because
the singularity is nearly vertical, it is quite clear that the Fourier transform of the edge
fragment will have slow decay along the horizontal axis ξ = (ξ1, 0). In this section, however,
we wish to understand the decay of the Fourier transform along radial lines of the form
(λ cos θ, λ sin θ), λ ∈ R, as θ moves away from the singular co-direction θ = 0, π. Our goal
is to quantify this decay at a finite distance of the origin, namely, for |λ| ∼ 2j .

Theorem 6.1 Let Ij be a dyadic interval [π · 2j−α, π · 2j+β ] with α, β ∈ {0, 1, 2, 3}. The
Fourier transform of the edge fragment obeys∫

|λ|∈Ij

|f̂(λ cos θ, λ sin θ)|2 dλ ≤ C · 2−2j · (1 + 2j/2| sin θ|)−5. (6.3)

We briefly discuss the relevance of this theorem for our problem. Curvelets are com-
pactly supported near parabolic wedges in the frequency plane and Theorem 6.1 quantifies
the frequency localization of an edge fragment as it gives bounds on the ‘energy’ an edge
fragment puts on each such parabolic wedge. With f an edge fragment and χJ a frequency
window as in Section 2, (6.3) gives∫

|f̂(ξ)|2|χJ(ξ)|2dξ ≤ C · 2−3j/2 · (1 + 2j/2| sin θJ |)−5. (6.4)
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Such bounds are sharp and cannot be improved. In a nushell, (6.4) controls the size of the
coefficients for a fixed value of the scale/angle pair J .

Let F be the renormalization of an edge fragment to the unit square

F (x) = f(2j/2x), x ∈ [−1, 1]2. (6.5)

Note that F is of the form

F (x) = w(x)g(2−j/2x)1{x1≥Ej(x2)}, Ej(x2) = 2j/2E(2−j/2x2). (6.6)

The edge curve Ej is again nearly straight. The Fourier transform of F is of course given
by F̂ (ξ) = 2−j f̂(2−j/2ξ), and, therefore, (6.3) is equivalent to∫

|λ|∈2−j/2·Ij

|F̂ (λ cos θ, λ sin θ)|2 dλ ≤ C · 2−j/2(1 + 2j/2| sin θ|)−5. (6.7)

From now on, we will use the ’nicer’ notation |λ| ∼ 2j/2 to indicate |λ| ∈ 2−j/2 · Ij =
[π · 2j/2−α, π · 2j/2+β].

The Radon transform provides a convenient tool to study integrals of the type (6.3) and
(6.7). We recall that the Radon transform of an object f is the collection of line integrals
indexed by (θ, t) ∈ [0, 2π)× R given by

Rf(θ, t) =
∫
f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2, (6.8)

where δ is the Dirac distribution. The Radon transform is linked to the polar Fourier trans-
form of an object f because the Projection Slice Theorem states that the Fourier transform
along radial lines may be obtained by applying the 1-dimensional Fourier transform to the
slices of the Radon transform

f̂(λ cos θ, λ sin θ) =
∫
Rf(θ, t)e−iλtdt.

6.3 The Radon Transform of an Edge Fragment

In this section, we will view RF (t, θ) as a function of the variable t while θ will merely play
the role of a parameter. From now on, the subscript t shall denote partial derivatives with
respect to the t variable.

Lemma 6.2 Set δ = 2−j/2 · ‖E′′‖L∞ and assume | sin θ| ≥ max(2−j/2, 2δ). The Radon
transform RF (·, θ) is twice differentiable and admits the following decomposition

(RF )tt(t, θ) = F 0(t, θ) + F 1(t, θ);

F 0 obeys
‖F 0‖2

L2
≤ C · 2−j · | sin θ|−5, (6.9)

and F 1 is differentiable and obeys

‖(F 1)t‖2
L2
≤ C · | sin θ|−5. (6.10)
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The Radon transform RF is the line integral along Ltθ = {(x1, x2), x1 cos θ+ x2 sin θ−
t = 0} which may or may not intersect with the edge E = {(Ej(u), u), |u| ≤ 1}. Note that
an intersection point is the solution of

Ej(u) cos θ + u sin θ = t. (6.11)

Recall our assumption | sin θ| ≥ 2δ. The function u 7→ Ej(u) cos θ + u sin θ is then strictly
monotone and we let a(θ) = Ej(−1) cos θ− sin θ, and b(θ) = Ej(1) cos θ+ sin θ. We denote
by I(θ) the interval with endpoints a(θ), b(θ); that is I(θ) is the range of Ej(u) cos θ+u sin θ
as u varies in the interval [−1, 1]. Observe that the size of this interval obeys

|I(θ)| ≤ 2| sin θ|+ 2δ ≤ 3| sin θ|. (6.12)

Lemma 6.3 Let Ej(x) ∈ C2[−1, 1] with Ej(0) = 0, E′
j(0) = 0, ‖E′′

j ‖L∞[−1,1] ≤ δ. For
| sin θ| > 2δ,

(1) Each line Ltθ intersects E in at most one point.

(2) The intersection is empty if t /∈ I(θ).

(3) Each x2 ∈ [−1, 1] generates a point (Ej(x2), x2) which is the intersection Ltθ ∩ E for
exactly one value of t ∈ I(θ).

We let u(t, θ) denote the value of x2 named in part (3) of this lemma. Viewing this as a
function of (t, θ), we observe the following behavior.

Lemma 6.4 Let | sin θ| ≥ 2δ. For each t ∈ I(θ), the function u(t, θ) is defined by (6.11).
It is C2, with partial derivatives

ut = (sin θ + E′
j(u) cos θ)−1,

utt = E′′
j (u) cos θ/(sin θ + E′

j(u) cos θ)3.

Note that the partial derivatives then obey the following estimates:

|ut| ≤ 2 · | sin θ|−1, (6.13)
|utt| ≤ 8δ · | sin θ|−3. (6.14)

These lemmas are elementary and we omit the proofs. Figure 6 gives a graphical indication
of some of the objects just described.

We now let F θ be the function obtained by composing F with the rotation by an angle
θ, namely,

F θ(x) = F (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ).

With these notations the Radon transform of F is given by

(RF )(t, θ) =
∫ ∞

−∞
F θ(t, u) du.

Define (t, a(t, θ)) to be the coordinates of the point (Ej(u), u) in the orthogonal coordinates
system rotated by an angle θ; a = −Ej(u) sin θ + u cos θ. Set G(x) = g(2−j/2x) · w(x) so
that F (x) = G(x) · 1{x1≥Ej(x2)}. For t ∈ I(θ), the Radon transform of F is then given by

(RF )(t, θ) =
∫ a

−∞
Gθ(t, u) du. (6.15)
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while for t /∈ I(θ), the same expression holds but with an integral of the form
∫∞
−∞.

The Radon transform RF is twice differentiable with respect to the t-variable and for
t ∈ I(θ), we calculate

(RF )t(t, θ) = at ·Gθ(t, a) +
∫ a

−∞
Gθ

1(t, u) du,

where the subscript 1 (resp. 2) indicates differentiation with respect to the first (resp. sec-
ond) variable. Further,

(RF )tt = attG
θ(t, a) + 2atG

θ
1(t, a) + (at)2Gθ

2(t, a) +
∫ a

−∞
Gθ

11(t, u) du

= T1 + 2T2 + T3 + T4

while or t /∈ I(θ), the second derivative is simply given by

(RF )tt =
∫ ∞

−∞
Gθ

11(t, u) du.

Checking the differentiability of RF at the endpoints of I(θ) = (a(θ), b(θ)) is a not an issue
since G(t, a) is identically zero for t in the neighborhood of both a(θ) and b(θ). In other
words, both calculations agree for t near a(θ) or b(θ).

The proof then consists in expressing each term Tm as a sum of terms Tm,n obeying
either (6.9) or being further differentiable with respect to t and with a derivative obeying
(6.10). Our calculations only use the following two facts: first, a is supported on the interval
I(θ) which is of length at most 3| sin θ| and obeys |at| ≤ C · | sin θ|−1 and |att| ≤ C · 2−j/2 ·
| sin θ|−3; second, letting D be either ∂/∂x1 or ∂/∂x2, |Dm(g(2−j/2x))| ≤ Cm · 2−jm/2. In
the remainder of the proof, we will abuse notations and let g actually denote the rescaled
object g(2−j/2x).

Consider T1. This function obeys ‖T1‖L∞ ≤ C · 2−j/2 · | sin θ|−3 and is supported in
I(θ). Therefore,

‖T1‖2
L2(R) ≤ C · 2−j · | sin θ|−5.

Consider T2. Express T2 as

T2 = at(g1w + w1g) = T2,1 + T2,2;

T2,1 is supported on I(θ) and obeys ‖T2,1‖L∞ ≤ C · 2−j/2 · | sin θ|−1. Hence, ‖T2,1‖2
L2(R) ≤

C · 2−j · | sin θ|−1 and, therefore, (6.9). T2,2 is differentiable and

(T2,2)t = attw1g + at(w11g + w1g1) + (at)2(w12g + w1g2).

Similar arguments give ‖(T2,2)t‖2
L2(R) ≤ C · 2−j · | sin θ|−5, i.e. (6.10).

Consider T3. Express T3 as

T3 = (at)2(g2w + w2g) = T3,1 + T3,2

Then T3,1 is supported I(θ) and obeys ‖T3,1‖L∞ ≤ C ·2−j/2 · | sin θ|−2. Hence, ‖T3,1‖2
L2(R) ≤

C · 2−j · | sin θ|−1 and, therefore, (6.9). T3,2 is differentiable and

(T3,2)t = 2attat(w2g) + (at)2(w12g + w1g2) + (at)3(w22g + w2g2).

25



Our basic arguments now give

‖(T3,2)t‖2
L2(R) ≤ C · (1 + 2−j | sin θ|−2) · | sin θ|−5,

and, therefore, (6.10) since we assumed | sin θ| ≥ 2−j/2.
At last, consider T4.

T4 =
∫ a

−∞
(g11w + 2g1w1 + gw11) du

= T4,1 + 2T4,2 + T4,3. (6.16)

Then |T4,1| ≤ C · 2−j and therefore ‖T4,1‖2 ≤ C · 2−2j . Likewise, |T4,2| ≤ C · 2−j/2 and
therefore ‖T4,2‖2 ≤ C · 2−j . Finally T4,3 is differentiable and its derivative is given by

(T4,3)t = atgw11 +
∫ a

−∞
gw111 + g1w11 du = T4,3,1 + T4,3,2.

The function T4,3,1 = atgw11 is supported on I(θ) and obeys ‖T4,3,1‖L∞ ≤ C · | sin θ|−1.
Hence, ‖T4,3,1‖2

L2
≤ C · | sin θ|−1. As far as the other term is concerned, ‖T4,3,2‖L∞ ≤ C

and hence ‖T4,3,1‖2
L2
≤ C.

For the sake of completeness, we just briefly mention how the proof adapts when the
integration line has an empty intersection with the edge curve. In this case, the second
derivative (RF )tt is simply given by

(Rf)tt =
∫ ∞

−∞
g11w + 2g1w1 + gw11 du = T4,1 + 2T4,2 + T4,3.

The estimated we collected for both T4,1 and T4,2 of course still hold. As far as the third
term is concerned, we have

(T4,3)t =
∫ ∞

−∞
gw111 + g1w11 du

and it is then clear that ‖(T4,3)t‖L∞ ≤ C and consequently ‖(T4,3)t‖2
L2
≤ C. This finishes

the proof of Lemma 6.2.
Suppose the object we wish to analyze is now of the form F̃ (x) = xm1

1 F (x), where F
is an edge-fragment as before and m1 a nonnegative integer. Then F̃ is of course an edge
fragment and therefore obeys the decomposition (6.9)-(6.10). However, these estimates can
be improved upon (the reason why we need sharper bounds will become apparent below).
Indeed, observe that along the edge curve E , xm1

1 F (x) obeys

|xm1
1 F (x)| ≤ C · 2−jm1/2, x ∈ E .

This is because E deviates little from zero and obeys sup|x2|≤1 |Ej(x2)| ≤ δ/2, and thus for
x ∈ E , |x1| ≤ C · 2−j/2.

Corollary 6.5 Let F be an edge fragment as in Lemma 6.2 and consider F̃ (x) = xm1
1 F (x).

Then (RF̃ )tt admits the following decomposition:

(RF̃ )tt = F0 + F1 + F2;

F 0 obeys
‖F 0‖2

L2
≤ C · 2−jm1 · 2−j · | sin θ|−5 + C · 2−2j ; (6.17)
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F 1 is differentiable and obeys

‖(F 1)t‖2
L2
≤ C · 2−jm1 · | sin θ|−5 + C · 2−j ; (6.18)

F2 is twice differentiable and obeys

‖(F 2)tt‖2
L2
≤ C. (6.19)

The proof proceeds as that of Lemma 6.2 and we write

(RF̃ )tt = T1 + T2 + T3 + T4

For each i = 1, 2, 3, Ti may be expressed as a sum of terms such that each verifies either
(6.9) or (6.10) –but for an additional multiplicative factor 2−jm1 since they all involve the
value of the edge fragment along the edge curve. This is the content of (6.17)–(6.18).

Now write T4 as before, i.e. (6.16). For T4,1, we use the same estimate as before,
namely ‖T4,1‖2 ≤ C · 2−2j and, therefore, obeys (6.17). For T4,2, we observe that this term
is differentiable and the derivative is given by

(T4,2)t = at(g1w1) +
∫ a

−∞
g1w11 + g11w1 du = T4,2,1 + T4,2,2

The first term T4,2,1 = atg1w1 obeys ‖T4,2,1‖L∞ ≤ C · 2−j/2 · 2−jm1/2 · | sin θ|−1 and as a
consequence ‖T4,2,1‖2

L2
≤ C · 2−jm1 · 2−j · | sin θ|−1, which is acceptable for (6.18). The

second term T4,2,2 verifies ‖T4,2,2‖L∞ ≤ C · 2−j/2 and then ‖T4,2,2‖2
L2
≤ C · 2−j which is also

acceptable. Finally

(T4,3)t = at(gw11) +
∫ a

−∞
g1w11 + gw111 du = T4,3,1 + T4,3,2 + T4,3,3.

Similar arguments give ‖T4,3,1‖2
L2
≤ C ·2−jm1 ·| sin θ|−1, which is acceptable and ‖T4,3,2‖2

L2
≤

C ·2−j which is also acceptable. Simple calculations show that the derivative of T4,3,3 obeys
(6.19) which concludes the proof.

6.4 Proof of Theorem 6.1

The proof of Theorem 6.1 is now one step away. To establish (6.7), observe that the Fourier
transform of (RF )tt is −λ2F̂ (λ cos θ, λ sin θ) which then gives the decomposition

−λ2F̂ (λ cos θ, λ sin θ) = F̂0(λ cos θ, λ sin θ) + F̂1(λ cos θ, λ sin θ).

Now, it follows from Lemma 6.2 that∫
|F̂0(λ cos θ, λ sin θ)|2dλ ≤ ‖F0(·, θ)‖2

L2(R) ≤ C · 2−j · | sin θ|−5.

Likewise, since iλF̂1(λ cos θ, λ sin θ) is the Fourier transform of the derivative of F1(·, θ), the
bound (6.10) gives ∫

|λ|2|F̂1(λ cos θ, λ sin θ)|2 dλ ≤ C · | sin θ|−5

and ∫
|λ|∼2j/2

|F̂1(λ cos θ, λ sin θ)|2 ≤ C · 2−j · | sin θ|−5.
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(We recall that |λ| ∼ 2j/2 means |λ| ∈ [π · 2j/2−α, π · 2j/2+β]). Therefore, we proved that∫
|λ|∼2j/2

|F̂ (λ cos θ, λ sin θ)|2 dλ ≤ C · 2−3j · | sin θ|−5, (6.20)

as claimed.
To conclude the proof of the theorem, we need to address the decay of the Fourier

transform in the directions (cos θ, sin θ), for | sin θ| ≤ max(2−j/2, 2δ); that is, for directions
which are nearly normal to the singularity.

Write the edge fragment as F (x) = F0(x) + ε(x) where F0(x) = 1{x1≥δ}g(2−j/2x)w(x)
and ε(x) = F (x) − F0(x); observe that F0 is much like F except that we substituted the
edge curve with a vertical straight line and that the difference function ε is supported in
a vertical strip whose width is at most δ. Then write F̂ = F̂0 + ε̂. The object F̂0 is the
Fourier transform of a smooth function with a straight discontinuity and F̂0(λ, 0) decays
like 1/|λ| as |λ| → ∞ and obeys∫

|λ|∼2j/2

|F̂0(λ cos θ, λ sin θ)|2 dλ ≤ C · 2−j/2.

We refer the reader to [3] for a proof, although this is an elementary fact. Next, for each
θ obeying | sin θ| ≤ max(2−j/2, 2δ), note that the Radon transform Rε(·, θ) is L∞-bounded
and supported in an interval of at most δ and thus obeys ‖Rε(·, θ)‖2

L2(R) ≤ C · δ ≤ C ·2−j/2.

Therefore,
∫
|λ|∼2j/2 |ε̂(λ cos θ, λ sin θ)|2 dλ ≤ C · 2−j/2 and this last estimate proves that for

each θ obeying | sin θ| ≤ max(2−j/2, 2δ),∫
|λ|∼2j/2

|F̂ (λ cos θ, λ sin θ)|2 dλ ≤ C · 2−j/2.

This last inequality together with (6.20) finish the proof of the theorem.
To establish the sparsity of curvelet coefficients of an edge fragment, it will prove to be

useful to develop bounds on the derivatives of the Fourier transform of an edge fragment.

Corollary 6.6 Suppose that f is an edge fragment as in (6.1). For each m = (m1,m2),
m1,m2 = 0, 1, 2, . . ., let Dm be the mixed derivative ∂m1

1 ∂m2
2 . Then the derivative of the

Fourier transform of an edge fragment obeys∫
|λ|∈Ij

|Dmf̂(λ cos θ, λ sin θ)|2dλ ≤ Cm · 2−j|m| · 2−jm1 · Ij(θ) + Cm · 2−j|m| · 2−5j , (6.21)

with Ij(θ) as in Theorem 6.1, i.e. Ij(θ) = 2−2j(1 + 2j/2| sin θ|)−5.

Consider imDmf̂ . This object is the Fourier transform of xmf(x) which we may rewrite as

xmf(x) = 2−j|m|/2g(x)wm(2j/2x)1{x1≥Ej(x2)}, wm(x) = xmw(x).

In other words, xmf(x) = 2−j|m|/2fm(x) where fm(x) is an edge fragment. Therefore, Dmf̂
obeys ∫

2j≤λ≤2j+1

|Dmf̂(λ cos θ, λ sin θ)|2 dλ ≤ Cm · 2−j|m| · 2−2j(1 + 2j/2| sin θ|)−5.

This is of course a naive upper-bounds and we already argued that we had available better
estimates, i.e. (6.17)–(6.19). Arguments identical to those developed above would turn the
size estimates (6.17)–(6.19) into (6.21). The proof is a mere repeat of that of Theorem 6.1
and is omitted.
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6.5 Arbitrary Edge Curves

As mentioned earlier, Theorem 6.1 does not depend upon the assumption that the edge
obeys (6.2) and yields a more general result. Consider a typical edge curve E (and associated
typical edge fragment) such that the point x0 = (x0,1, x0,2) ∈ E and that at that point the
tangent is pointing in the direction (sin θ0, cos θ0). Then the edge fragment (6.1) would
obey Theorem 6.1 with of course | sin(θ − θ0)| in place of | sin θ| in the right-hand side of
(6.3).

Let R0 be the rotation by the angle θ0. Technically speaking, although a typical edge
fragment f is not of the form f(x) = f0(R0(x − x0)) with f0 a ‘standard’ edge fragment
because of the windowing (6.1), our size estimates (6.3)–(6.21) behave as if this were the
case. Let us explain.

Corollary 6.7 Consider a typical edge fragment f as descibed above then its Fourier trans-
form may be expressed as

f̂(ξ) = e−ix0·ξ f̂0(R0ξ),

where f̂0 obeys Theorem 6.1 and Corollary 6.6.

We omit the proof of this intuitive corollary as this is a mere repreat of the arguments
presented above.

7 Curvelet Analysis of Edge Fragments

Let MJ denote the set of coefficients µ = (j, `, k) with a fixed value of the scale/angle pair
J = (j, `). In the previous section, we developed a key inequality (6.4) which gives a very
precise bound on the `2 norm of the curvelet coefficients of an edge fragment f . Indeed,∑

µ∈MJ

|θµ|2 =
∫
|f̂(ξ)|2|χJ(ξ)|2dξ ≤ C · 2−3j/2 · (1 + 2j/2| sin θJ |)−5. (7.1)

For a fixed J , set `J = 1 + 2j/2| sin θJ | and let NJ(ε) be the number of indices µ ∈ MJ

such that |θµ| > ε. Roughly speaking, at scale 2−j and for a fixed orientation J , there
are only about O(`J) curvelets whose support overlaps significantly with the edge curve E .
Assuming that the other coefficients are negligible, it would follow from

NJ(ε) · ε2 ≤
∑

µ∈MJ

|θµ|2

together with (7.1) that

NJ(ε) ≤ C ·min
(
`J , 2−3j/2 · ε−2 · `−5

J

)
.

Recall that θJ = 2π · 2−j/2 · `, ` = 0, 1, . . . , 2j/2 − 1 or we may assume a slightly different
parameterization and set ` = −2j/4, . . . , 2j/4−1. For θ ∈ [−π/2, π/2], 2|θ|/π ≤ | sin θ| ≤ |θ|
and, therefore,

NJ(ε) ≤ C ·min(1 + |`|, 2−3j/2 · ε−2 · (1 + |`|)−5).

Hence ∑
`

NJ(ε) ≤ C · 2−j/2 · ε−2/3,

which is (5.4). This is of course a rough sketch aimed at quantitatively explaining why the
coefficients of an edge fragment obey (5.4). Indeed, we assumed that most coefficients were
’negligible’ and a rigorous proof must of course quantify the size of these individuals.
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7.1 Proof of Theorem 5.2

Recall the frequency domain definition of a curvelet (2.9): γ̂µ(ξ) = (2π)χJ(ξ)uj,k(R∗
θJ
ξ)

with uj,k as in (2.8). We recall that uj,k(R∗
θJ
ξ) is an orthogonal basis for L2(ΞJ) where ΞJ

is a rectangle containing the support of χJ . In the Fourier domain, curvelet coefficients are
thus given by

θµ =
1
2π

∫
f̂(ξ)χJ(ξ)uj,k(R∗

θJ
ξ) dξ.

We now let D1 be the partial derivative in the direction (cos θJ , sin θJ) and D2 be the
derivative in the orthogonal direction, namely, (− sin θJ , cos θJ). With `J as before, set
L = (1− (2j/`J)2D2

1)(1− 2jD2
2). Then a simple calculation shows

L(uj,k ◦R∗
θJ

) = (1 + `−2
J (k1 + 1/2)2)−1 · (1 + k2

2)
−1(uj,k ◦R∗

θJ
),

and integrating by parts gives

θµ = (1 + `−2
J (k1 + 1/2)2)−1 · (1 + k2

2)
−1 ·

∫
(Lf̂χJ)(ξ)uj,k(R∗

θJ
ξ) dξ. (7.2)

Let K = (K1,K2) ∈ Z2 and define RK to be the set of coefficients (k1, k2) such that
`−1
J (k1 + 1/2) ∈ [K1,K1 + 1) and k2 = K2. It then follows from the orthogonality property

of the system (uj,k(R∗
θJ
ξ))k that

∑
k∈RK

|θµ|2 ≤ C · (1 + |K1|2)−2 · (1 + |K2|2)−2 ·
∫
|(Lf̂χJ)(ξ)|2 dξ,

In the Appendix, we show that (Lf̂χJ) obeys the same estimate as the edge fragment,
namely, ∫

|(Lf̂χJ)(ξ)|2 dξ ≤ C · 2−3j/2(1 + 2j/2| sin θJ |)−5. (7.3)

In short, we have available the following bound∑
k∈RK

|θµ|2 ≤ C · L−2
K · 2−3j/2(1 + 2j/2| sin θJ |)−5, LK = (1 + |K1|2)(1 + |K2|2). (7.4)

The rest of the proof mimics those estimates introduced at the beginning of this section.
For a fixed orientation J , let NJ,K(ε) be the number of indices µ ∈ MJ such that k ∈ RK

and |θµ| > ε. NJ,K(ε) is of course bounded by |RK | ≤ `J and obeys

NJ,K(ε) ≤ C ·min(`J , 2−3j/2 · L−2
K · ε−2 · `−5

J )

as this follows from (7.4). Put εj,K = ε · LK · 23j/4. Then the same calculations as before
now give ∑

|J |=j

NJ,K(ε) ≤ C · (εj,K)−2/3 = C · 2−j/2 · ε−2/3 · L−2/3
K .

Since
∑

K∈Z2 L
−2/3
K ≤ A, we proved that

|{µ ∈Mj , |θµ| > ε}| ≤ C · 2−j/2 · ε−2/3.

This finishes the proof of Theorem 5.2.
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7.2 Arbitrary Edge Fragments

The previous calculations assumed that the edge fragment obeys (6.2). We hope that it is
clear that nothing in the curvelet transform crucially depends upon this specific location
and orientation. To see how the argument effortlessly adapts to arbitrary edge fragments,
we follow Section 6.5. Recall that the Fourier transform of a typical edge fragment f (the
edge curve has location x0 and orientation θ0) is of the form f̂(ξ) = e−ix0·ξ f̂0(R0ξ) where
f̂0 obeys Theorem 6.1 and Corollary 6.6, see Corollary 6.7.

We introduce some notations and let uJ,k be the function defined by uj,k(R∗
θJ
x). Then

θµ =
1
2π

∫
f̂0(R0ξ)e−ix0·ξχJ(ξ)uJ,k(ξ) dξ

=
1
2π

∫
f̂0(ξ)χJ(R∗

0ξ)uJ,k−k0(R∗
0ξ) dξ;

observe the shifted index k − k0 with k0 defined as k0 = R∗
θJ
x0. In effect, the angle θJ of

the curvelet has also been shifted, i.e. by θ0. Since f̂0 obeys Theorem 6.1 and Corollary
6.6, all of our estimates remain the same but for a shift in the parameters of the curvelet
transform. For instance, (7.1) becomes∑

µ∈MJ

|θµ|2 =
∫
|f̂(ξ)|2|χJ(R∗

0ξ)|2dξ ≤ C · 2−3j/2 · (1 + 2j/2| sin(θJ − θ0)|)−5.

Next, letting `J = 1 + 2j/2| sin(θJ − θ0)| and setting L = (1− (2j/`J)2D2
1)(1− 2jD2

2) with
D1 being now the partial derivative in the direction (cos(θJ − θ0), sin(θJ − θ0)) would give

θµ = (1 + `−2
J (k1 − k0,1 + 1/2)2)−1 · (1 + (k2 − k0,2)2)−1 ·

∫
(Lf̂χJ(R∗

0·))(ξ)uJ,k(R∗
0ξ) dξ

just as before (7.2) and of course the left-hand side of (7.3) would be replaced by C ·
2−3j/2(1 + 2j/2| sin(θJ − θ0)|)−5. From here, it is clear how the rest of arguments would
then proceed.

7.3 Coarse Scale Edge Fragments

We would like to conclude this section by remarking that strictly speaking, an edge fragment
assumes that the scale is fine enough so that j ≥ j0 where j0 is simply related to the
maximum curvature of the edge curve. In all rigor, we have therefore not covered the cases
where j < j0 although these are trivial since they morally involve only a finite number
of coefficients. In the next section, we will prove that for any edge fragment f , θQ obeys
‖θQ‖`2/3

≤ 2j/2 which then establishes Theorem 5.2 for j < j0.

8 Curvelet Analysis of Smooth Functions

8.1 Proof of Theorem 5.3

We begin with a lemma.

Lemma 8.1 Let Ξj be a dyadic corona of the form π · 2j−α ≤ |ξ| ≤ π · 2j+β with α, β =
0, 1, 2, 3. Suppose that Q ∈ Q1, then fQ obeys∫

Ξj

|f̂Q(ξ)|2 dξ ≤ C · 2−5j . (8.1)
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Proof of Lemma. The function fQ = gwQ is supported in a square of sidelength 2 · 2−j/2,
is twice differentiable and its second partial derivative with respect to x1, say, is given by

(fQ)11 = g11wQ + 2g1(wQ)1 + gw11 = T1 + 2T2 + T3.

1. The function T1 obeys ‖T1‖L∞ ≤ C and, therefore, ‖T1‖2
L2
≤ C · 2−j .

2. The function T2 is differentiable and a trivial calculation gives ‖(T2)1‖L∞ ≤ C · 2j ;
therefore, ‖(T2)1‖2

L2
≤ C · 2j .

3. The function T3 is twice differentiable and a trivial calculation gives ‖(T3)11‖L∞ ≤
C · 22j ; therefore, ‖(T3)11‖2

L2
≤ C · 23j .

Let Ij be a dyadic interval of the form [π · 2j−α, π · 2j+β] with α, β = 0, 1, 2, 3. Using
arguments similar to those deployed in the proof of Theorem 6.1, we obtain that for each
n = 1, 2, 3, T̂n obeys ∫

|ξ1|∈Ij

∫
ξ2

|T̂n(ξ1, ξ2)|2 dξ1dξ2 ≤ C · 2−j .

Since −ξ21 f̂Q(ξ) = T̂1(ξ) + 2T̂2(ξ) + T̂3(ξ), we proved that∫
|ξ1|∈Ij

∫
ξ2

|f̂Q(ξ1, ξ2)|2 dξ1dξ2 ≤ C · 2−5j . (8.2)

Of course, a similar bound would hold with the dyadic strip {ξ, |ξ2| ∈ Ij} (instead of
{ξ, |ξ1| ∈ Ij}) as a domain of integration.

The overall structure of the proof of Theorem 5.3 is now analogous to that of Theorem
5.2. We first turn the upper-bound (8.1) into a size estimate about the `2-norm of the
coefficients of fQ at a fixed scale 2−j . Indeed, the sequence θQ obeys∑

µ∈Mj

|θQ,µ|2 ≤
∫

Ξj

|f̂Q(ξ)|2 dξ ≤ C · 2−5j . (8.3)

We then turn this `2-estimate into an `p type of estimate. To do this, recall the interpolation
inequality

‖θ‖`p ≤ n1/p−1/2‖θ‖`2 (8.4)

valid for arbitrary finite sequences of length n. Roughly speaking, at scale 2−j , there are
only about 2j curvelets whose support overlap significantly with fQ. Assuming that the
other coefficients are negligible, (8.4) would give

‖θQ‖`p ≤ 2j(1/p−1/2)‖θQ‖`2 ,

and, therefore,for p = 2/3, θQ would obey

‖θQ‖`2/3
≤ 2−3j/2

since ‖θQ‖`2 ≤ C · 2−5j/2. This is the content of Theorem 5.3.
Proof of Theorem 5.3. In the Fourier domain, curvelet coefficients are again given by

θµ =
1
2π

∫
f̂(ξ)χJ(ξ)uj,k(R∗

θJ
ξ) dξ.

32



Set L = (1− 2j∆) with ∆ the usual Laplacian ∆ =
∑2

i=1 ∂
2/∂ξ2i . Then

L(uj,k ◦R∗
θJ

) = (1 + 2−j(k1 + 1/2)2 + k2
2)(uj,k ◦R∗

θJ
).

Hence, an integration by parts gives

θµ = (1 + 2−j(k1 + 1/2)2 + k2
2)
−2 ·

∫
L2(f̂χJ)(ξ)uj,k(R∗

θJ
ξ) dξ.

Let K = (K1,K2) ∈ Z2 and define RK to be the set of coefficients (k1, k2) such that
(k1 + 1/2)2−j ∈ [K1,K1 + 1) and k2 = K2. It then follows from the orthogonality property
of the system (uj,k(R∗

θJ
ξ))k that∑

k∈RK

|θµ|2 ≤ C · (1 + |K|2)−4 ·
∫
|L2(f̂χJ)(ξ)|2 dξ.

We now sum this last inequality over all angular wedges J = (j, `) at a fixed scale |J | = j
and obtain ∑

|J |=j

∑
k∈RK

|θµ|2 ≤ C · (1 + |K|2)−4 ·
∫ ∑

|J |=j

|L2(f̂χJ)(ξ)|2 dξ.

The Appendix develops a bound for the right-hand side of this last inequality, namely,∫ ∑
|J |=j

|L2(f̂χJ)(ξ)|2 dξ ≤ C · 2−5j . (8.5)

The remainder of the proof mimics the argument presented above. We first observe
that the number of terms in RK is bounded by 1 + 2j/2 and thus the cardinality of the set
indices µ ∈ Mj such that k ∈ RK and ` = 1, 2, . . . 2j/2 is less or equal to 2j + 2j/2. The
interpolation inequality (8.4) gives∑

`

∑
k∈RK

|θQ,µ|p ≤ C · 2j(1−p/2) · 2−5jp/2 · (1 + |K|2)−2p.

Since for p > 1/2,
∑

K∈Z2(1 + |K|2)−2p ≤ Ap, we proved that for each p > 1/2,∑
µ∈Mj

|θQ,µ|p ≤ C · 2j(1−3p).

In particular ‖θQ‖`2/3
≤ C · 2−3j/2. This finishes the proof of our Theorem.

Remark. Let fQ be an edge fragment. Then fQ of course obeys ‖fQ‖L2 ≤ C ·2−j/2 and,
therefore, ‖θQ‖`2 ≤ C · 2−j/2. The above analysis would then give ‖θQ‖`p ≤ C · 2j(1/p−1),
and in particular ‖θQ‖`2/3

≤ C · 2j/2 as claimed in the previous section.

8.2 Sparsity of Smooth Functions

The argument we presented above is general and shows that curvelets are just as effective
as any other classical system for representing smooth objects (as claimed in Section 4). To
make this statement precise, recall the defintion of the Sobolev norm of an object f :

‖f‖2
W s

2
=

∫
|f̂(ξ)|2(1 + |ξ|2s) dξ,

which is equivalent to ‖f‖2
L2

+ ‖Dsf‖2
L2

, where Ds is the sth derivative of f proviso that s
is an integer.
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Theorem 8.2 Suppose that g ∈ W s
2 , s > 0, and supp g ⊂ [0, 1]2. Let θ be the curvelet

coefficient sequence of g. Then, ∑
µ

22js|θµ|2 ≤ C · ‖f‖2
W s

2
, (8.6)

and
‖θ‖w`∗p ≤ C · ‖f‖W s

2
, 1/p∗ = (s+ 1)/2. (8.7)

We only sketch the proof of this result as this is an easy modification of the ideas we already
exposed. With the same notations as before, by definition the Fourier transform obeys∫

Ξj

|f̂(ξ)|2 dξ ≤ C · 2−2js.

which can be turned into the estimate∑
µ∈Mj

|θµ|2 ≤ C · 2−2js.

This gives the first part of the result. Next, at scale 2−j , we only have about 22j curvelets
which interact with the unit square [0, 1]2. Ignoring the other coeffcients (they can be
handled using rapid spatial decay of γµ), we have

#{µ ∈Mj , |θµ| > ε} ≤ C ·min(22j , ε−2 · 2−2js).

Summing this inequality accros j ≥ 0 gives

#{µ ∈Mj , |θµ| > ε} ≤ C · ε−p∗ .

which proves the second part.
Remark. The above result shows that suffices to prove Theorem 1.2 for objects f of the

form f = f1 · 1B. This follows from the fact that the curvelet coefficient sequence (θµ) of
an arbitary object f = f0 + f1 · 1B may be decomposed as follows

θµ = 〈f, γµ〉 = 〈f0, γµ〉+ 〈f2 · 1B, γµ〉 = θ0
µ + θ1

µ,

where θ0 obeys (8.7), i.e for s = 2, ‖θ0‖w`2/3
≤ C.

9 Discussion

This paper introduced new tight frames of curvelets and proved that curvelets provide
optimally sparse representation of objects with singularities along C2 edges. This result
motivated the whole construction and in itself explains its appeal. Short of this result, the
construction would be an interesting new multiscale architecture, but simply one among
many possibilities.

In fact, just as any transform may be applied to a wide spectrum of problems, there
is a range of possible applications of curvelet systems which is much wider than the types
of approximation theoretic problems studied in this paper. In particular, we would like
to point out applications in image processing [9, 34, 33], statistical estimation [8] and
possible applications in partial differential equations and scientific computing. For instance,
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some recent work [4] shows that some classical types of operators, namely Fourier Integral
Operators, admit optimally sparse decompositions in curvelet frames.

Space limitations prevent extensive discussion of these applications. However, it is
worth recalling that the sparsity estimates proven here are directly related to performance
metrics in these applications. In all these applications, sparser expansions theoretically lead
to better reconstructions and faster algorithms and so the estimates proven here form a
central motivating factor in efforts towards applications.

10 Appendix

Proof of (7.3). With the notations of Section 7, note that for each pair m = (m1,m2),
m1,m2 = 0, 1, 2, . . . the mixed derivative of χJ obeys

Dm1
1 Dm2

2 χJ(ξ) = O(2−jm1 · 2−jm2/2). (10.1)

Next, from the definition the the partial derivatives D1 and D2, namely,

D1f̂ = cos θJ∂1f̂ + sin θJ∂2f̂ , D2f̂ = − sin θJ∂1f̂ + cos θJ∂2f̂ ,

we deduce a formula for higher order derivatives

Dm
1 f̂ =

∑
α+β=m

cα,β(cos θJ)α(sin θJ)β∂α
1 ∂

β
2 f̂ ,

and similarly for Dm
2 f̂ . As in Section 2, assume that RJ is a symmetric rectangle containing

the support of χJ . Corollary 6.6 gives bounds on the L2-norm of partial derivatives of the
function f̂ , namely, letting `J = (1 + 2j/2| sin θJ |)

‖∂α
1 ∂

β
2 f̂‖

2
L2(RJ ) ≤ Cα,β · 2−j(α+β)(2−αj2−3j/2`−5

J + 2−5j).

Now, from
‖Dm

1 f̂‖2
L2(RJ ) ≤ cm ·

∑
α+β=m

| sin θJ |2β · ‖∂α
1 ∂

β
2 f̂‖

2
L2(RJ ),

and bounds on each individual term ‖∂α
1 ∂

β
2 f̂‖L2(RJ ), we then derive the size estimate

‖Dm
1 f̂‖2

L2(RJ ) ≤ Cm · 2−jm
(
2−5j + 2−jm · 2−3j/2 · `2m−5

J

)
.

The above inequality used the relationship | sin θ| ≤ 2−j/2 · `J . For m ≤ 2, note that
2−5j ≤ 2−j(m+3/2) · `2m−5

J since `J ≥ 1 and, therefore,

‖Dm
1 f̂‖2

L2(RJ ) ≤ Cm · (2j`−1
J )−2m · 2−3j/2 · `−5

J . (10.2)

There is an analogous estimate for Dm
2 f̂ and indeed, similar calculations now give

‖Dm
2 f̂‖2

L2(RJ ) ≤ Cm · 2−jm · 2−3j/2 · `−5
J . (10.3)

We now prove that

L(f̂χJ) = (I − 22j`−2
J D2

1 − 2jD2
2 + 23j`−2

J D2
1D

2
2)(f̂χJ)
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obeys (7.3). First, observe that

D2
1(f̂χJ) = (D2

1 f̂)χJ + 2(D1f̂)(D1χJ) + f̂(D2
1χJ).

Then (10.2), together with (10.1) gives

(2j`−1
J )2 · ‖D2

1(f̂χJ)‖L2 ≤ C · 2−3j/4 · `−5/2
J .

Second, (10.3), together with (10.1) gives

2j · ‖D2
2(f̂χJ)‖L2 ≤ C · 2−3j/4 · `−5/2

J .

And third, it is easy to verify that similar calculations also give

(23j`−2
J ) · ‖D2

1D
2
2(f̂χJ)‖L2 ≤ C · 2−3j/4 · `−5/2

J .

Our claim (7.3) now follows from these last three inequalities.
Proof of (8.5). Let ∆ be the usual Laplacian. We argue that for each each m =

0, 1, 2, . . ., there is a constant Cm with the property∫ ∑
|J |=j

|∆m(f̂χJ)(ξ)|2 dξ ≤ C · 2−2jm · 2−5j . (10.4)

Note that for m = 0, (10.4) holds because of Lemma 8.1. Further, (10.4) would give (8.5)
since L2 = I − 2 · 2j∆ + 22j ·∆2.

The proof will use the following basic fact about the window χJ (see Section 2). For
α = (α1, α2), we let Dα be the mixed derivative ∂α1

1 ∂α2
2 . Then for each pair α, the DαχJ ’s

obey ∑
|J |=j

|DαχJ(ξ)|2 ≤ Cα · 2−j|α|, (10.5)

for some constant Cα.
Now begin with

∆m(f̂χJ) =
∑

|α|+|β|=2m

cα,β D
αf̂DβχJ .

We then use (10.5) and obtain∫ ∑
|J |=j

|Dαf̂(ξ)|2|DβχJ(ξ)|2 dξ ≤ Cβ2−j|β|
∫

π·2j−1≤|ξ|≤π·2j+2

|Dαf̂(ξ)|2 dξ.

Recall that here f(x) is of the form f(x) = g(x)w(2j/2x) where w is a window with
support in [−1, 1]2. Now Dαf̂ is the Fourier transform of xαf(x). Write xαf(x) as
2−j|α|/2g(x)wα(2j/2x) where wα(x) = xαw(x). The window wα is of course C∞, com-
pactly supported in [−1, 1]2 and obviously Fourier transform of g(x)wα(2j/2x) obeys the
decay estimate (8.1). Hence,∫

π·2j−1≤|ξ|≤π·2j+2

|Dαf̂(ξ)|2 dξ ≤ Cα · 2−j|α| · 2−5j .

To conclude, for each α, β with |α|+ |β| = 2m, we proved that∫ ∑
|J |=j

|Dαf̂(ξ)|2|DβχJ(ξ)|2 dξ ≤ Cm · 2−2jm · 2−5j ,

and, therefore, (10.4) follows.
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