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Abstract

A recent body of work introduced new tight-frames ofcurvelets[3, 4] to ad-
dress key problems in approximation theory and image processing. This paper
shows that curvelets essentially provide optimally sparse representations of Fourier
Integral Operators.

Dedicated to Yves Meyer on the occasion of his 65th birthday.

1 Introduction

This paper is concerned with the representation of a large class of operators, namely,
Fourier Integral Operators (FIOs) in the newly introduced tight frames ofcurvelets
[3, 4]. Curvelets are a new multiscale construction for representing bivariate functions
and were originally introduced in connection with central problems in approximation
theory and statistical estimation; since then, curvelets have also made their way in
image processing as an alternative to other classical image representations. Recall that
a collection of functions(fµ)µ is said to be a tight frame forL2(R2) if it obeys the
Parseval relation ∑

µ

|〈f, fµ〉|2 = ‖f‖2
L2(R2), ∀f ∈ L2(R2). (1)

This relation implies, by standard arguments, that we have available the reconstruction
formula

f =
∑

µ

〈f, fµ〉fµ, (2)

with equality holding in anL2 sense.
To introduce the concept of representation of a linear operator, suppose we are

given a linear transformationT acting on square integrable functionsf ∈ L2(R2)

Tf(x) =
∫

K(x, y)f(y) dy. (3)



Alternatively, we may want to think ofT via its action on the frame elementsfµ and
introduce the infinite matrix

TF (µ, µ′) = 〈fµ, T fµ′〉; (4)

in other words,TF maps the coefficients of an objectf into those ofTf . Needless
to say, the datum of the matrixTF (µ, µ′) completely specifies the operatorT as an
operator fromL2(R2) to itself (extensions beyondL2 are of course generally possible)
since(fµ)µ is a tight frame forL2(R2).

1.1 Sparsity

Here, we are interested in finding a representation that would provide optimally sparse
representations of a wide class of operators in common use in mathematical and nu-
merical analysis. We would like to emphasize that we are not interested in finding
the sparsest possible representation of any given operatorT of interest. Rather we
are interested in finding a single representation that would arguably be nearly the best
simultaneouslyover a wide range of operators.

To illustrate this matter, consider the representation of translation-invariant oper-
ators. Fourier representations arguably provide very sparse representations as they
actually diagonalize such operators. However, this property is very fragile and Fourier
analysis is not suitable for a wider class of interesting transformations. Following upon
the work of Littlewood and Paley, work in modern harmonic analysis developed new
time-scale representations perhaps best known under the name ofwavelet transforms
which were proved toalmostdiagonalize a much richer class of operators, namely,
pseudo-differential operators and certain types of Calderón-Zygmund (CZO) [8]. In a
nutshell, a CZO is an operator whose kernelK is (1) singular along the diagonal but
(2) smooth away from the diagonal. Just as trigonometric systems provide the best rep-
resentations of translation-invariant operators, wavelets provide, in some sense, funda-
mentally correct representations of CZOs which facilitate their study and manipulation.

The potential for sparsity is of course wide-ranging and because of space limita-
tions, we shall only discuss its implications for scientific computing. Here, sparsity
may allow the design of fast matrix multiplication and/or fast matrix inversion algo-
rithms. For instance, because translation-invariant operators are diagonal in Fourier
bases and that one has available a fast algorithm for computing discrete Fourier trans-
forms (FFT), it is possible to apply a vector of sizeN to such a matrix inO(N log N)
operations. (Consider the extensive literature on the use of Fourier methods (the so-
called spectral methods) in numerical analysis.) Further, [1] made a big splash by
showing how to use the wavelet transform to compute certain types of singular inte-
grals in a number of operations of the order ofC(ε) ·N log N whereC(ε) is a constant
depending upon the desired accuracyε.

1.2 Fourier Integral Operators

An operatorT is said to be a Fourier Integral Operator (FIO) if it is of the form

Tf(x) =
∫

eiΦ(x,ξ)a(x, ξ)f̂(ξ) dξ. (5)
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HereΦ is a phase function anda is an amplitude which we suppose obey the following
standard assumptions [12]:

• the phaseΦ(x, ξ) is C∞, homogeneous of degree 1 inξ, i.e. Φ(x, λξ) =
λΦ(x, ξ) for λ > 0, and withΦxξ = ∇x∇ξΦ, obeys the nondegeneracy condi-
tion

|detΦxξ(x, ξ)| > c > 0, (6)

uniformly in x andξ;

• the amplitudea is a symbol of orderm, which means thata is C∞, and obeys

|∂α
ξ ∂β

xa(x, ξ)| ≤ Cαβ(1 + |ξ|)m−α. (7)

It is known that both Fourier and wavelet bases do not provide sparse representations
of FIOs.

2 Curvelets

By now, there are several types of curvelet frames [3, 4] and we now briefly discuss
the curvelet frame as introduced in [5, 4]. We letµ be the triple(j, `, k): here,j =
0, 1, 2, . . . is a scale parameter;̀ = 0, 1, . . . 2bj/2c − 1 is an orientation parameter
(bxc is the integer part ofx); andk = (k1, k2), k1, k2 ∈ Z is a translation parameter.
Introduce

1. theparabolic scalingmatrixDj = diag(2j , 2bj/2c) which is diagonal and whose
entries are2j and2bj/2c;

2. therotation angleθJ = 2π · 2−bj/2c · `, with J indexing the scale/angle pair
J = (j, `);

3. and thetranslation parameterkδ = (k1 · δ1, k2 · δ2) (δ1, δ2 are some universal
numerical quantities, e.g.δ1 = 14/3 andδ2 = 10π/9, see [4] for details).

With these notations, we define curvelets as functions ofx ∈ R2 by

γµ(x) = 23j/4γ(j) (DjRθJ
x− kδ) . (8)

The profileγ(j) actually depends on the scale parameterj but in a non essential way;
for eachj, γ(j) is smooth and oscillatory in the horizontal direction and bell-shaped
(nonoscillatory) along the vertical direction and is well-localized in space; e.g. for
eachm = 0, 1, . . ., γ(j)(x) and its derivatives obey|γ(j)(x)| ≤ Cm · (1 + |x|)−m,
uniformly in j.

The frequency-side description of a curvelet is equally important to understand our
main results. In the frequency domain, curvelets are compactly supported and each
element̂γµ is localized near the symmetric wedge

WJ = {±ξ, 2j ≤ |ξ| ≤ 2j+1, |θ − θJ | ≤ π · 2−bj/2c}, (9)
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i.e. curvelets are supported inside symmetric wedges of length about2j and width
about2j/2. This explains their oscillatory nature: at scale2−j , a curvelet is a little
needle whose envelope is a specified ‘ridge’ of effective length2−j/2 and width2−j ,
and which displays an oscillatory behavior across the main ‘ridge’.

As in wavelet theory, we also have coarse scale elements which are of the form
ϕk1,k2(x) = ϕ(x − kδ), k1, k2 ∈ Z, i.e. translates of a waveformϕ(x1, x2) that we
shall take to be bandlimited and rapidly decaying. Augmented with this layer of coarse
scale elements, the system(γµ)µ obeys the Parseval relation (1) and the reproducing
formula (2).

3 Microlocal Correspondence

A distinguished feature of the curvelet transform is that the action of an FIO on curvelet
elements is in some sense very “simple.” Roughly speaking, a curveletγµ is mapped
into another curvelet at a corresponding indext(µ). To be more specific, an FIO in-
duces a mappingµ 7→ t(µ) with the property that the significant coefficients ofTγµ

are located at indicesµ′ near the indext(µ) (the next section will introduce a notional
distance on our index set).

There are many ways to establish a formal index correspondence and we only
present a possible approach. Letγµ be a curvelet with scale2−jµ , with codirection
θµ and locationxµ (which we may formally define as e.g.xµ = (DjRθJ

)−1kδ) andT
be an FIO with phaseΦ. Setξµ = (cos θµ, sin θµ) to be the unit vector in the direction
θµ—so that in frequency,̂γµ is localized near{ξ, |ξ/|ξ| − ξµ| ≤ π · 2−bj/2c}—and
define

φµ(x) = Φξ(x, ξµ), and yµ = φ−1
µ (xµ), (10)

(note thatφµ is a diffeomorphism). LettingAµ be the derivative with respect to the
space variable ofφµ(x) evaluated at the pointyµ, i.e. Aµ = Φxξ(yµ, ξµ), we then
defineτµ by

τµ = AT
µ ξµ/‖AT

µ ξµ‖.

With these notations, we introduce the index mappingt defined as follows:µ′ = t(µ)
with (1) jµ′ = jµ, (2) ξµ′ is the closest point toτµ on our discrete lattice, and (3)xµ′ is
the closest point toyµ on the Cartesian lattice induced by the pair(jµ′ , θµ′). Although
there exist more sophisticated mappings, our microlocal correspondence provides a
simple description which is sufficient for our exposition.

4 Main result

We begin by introducing a notional distanceω between pairs of indices(µ, µ′):

|ω(µ, µ′)| = 2|jµ−jµ′ |·
(
1 + min(2jµ , 2jµ′ )

[
|θµ − θµ′ |2 + |xµ − xµ′ |2 + |〈ξµ, xµ − xµ′〉|

])
.

(11)
We see thatω increases as the distance between the scale, angular, and location pa-
rameters increases. Note that the extra term|〈ξµ, xµ − xµ′〉| induces a non-Euclidean
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Figure 1: Microlocal correspondence and associated notation. In some, sense, a
curvelet localized nearxµ and with codirectionξµ, is mapped into a curvelet local-
ized nearyµ and with codirectionτµ.

notion of distance betweenxµ andxµ′ . Equipped with this definition, we may now
state the main results of this paper.

Theorem 4.1 Let T be a FIO with a symbol of orderm = 0 so thatT is a bounded
L2-operator which obeys the above assumptions. Then for eachN ≥ 0, the matrix
entries in a curvelet frame obey

|TF (µ, µ′)| ≤ CN · |ω(µ, t(µ′))|−N , (12)

for some constantCN > 0.

The specialist will see how to adapt the result to arbitrary symbol orders. A corollary
of this results is as follows:

Theorem 4.2 Under the same assumptions of Theorem 4.1, the matrixT maps bound-
edly`p into `p for every0 < p ≤ ∞. For p ≤ 1, this says that

‖T‖p
`p→`p

= sup
µ′

∑
µ

|Tµ,µ′ |p ≤ Cp. (13)

We give an equivalent formulation of (13). Letting(aµ) be either a row or a column of
A, and let|a|(n) be then-largest entry of the sequence|aµ|, then for eachr > 0, |a|(n)

obeys
|a|(n) ≤ Cr · n−r. (14)

with a constant which does not depend on the row or column index. In short, the row
or column entries of the matrixA0 decay nearly exponentially, i.e. faster than any
negative polynomial.

The above two theorems say that the curvelet matrix is both sparse and well-
organized. Roughly speaking, if we think about the wavelet matrix of a CZO as being
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almostdiagonal, then we may think of the curvelet matrix of an FIO as beingalmosta
permutation. Mathematically speaking, consider the approximate or ‘compressed’ op-
eratorTB with at mostB elements per row and column—those indices which are the
closest tot(µ) in the sense of (11)—and setting the others to zero. Then an application
of Schur’s lemma shows thatTB would obey

‖T − TB‖L2→L2 ≤ Cm ·B−m, (15)

for eachm > 0. In plain English, whereas the Fourier or wavelet representations are
dense, the estimate (15) says that in the curvelet domain, there are very sparse matrices
which are arbitrarily close to the action of fairly general FIOs.

5 Why does this work?

Because of space constraints, we cannot possibly give a proof of Theorems 4.1 and
4.2. However, this section presents a heuristic argument which explains why we may
expect an FIO to be sparse in a curvelet frame.

Let γµ be a fixed curvelet. With the same notations as before, we decompose the
phase of our FIO as

Φ(x, ξ) = Φξ(x, ξµ) · ξ + δ(x, ξ), φµ(x) = Φξ(x, ξµ). (16)

In effect, the above decomposition ‘linearizes’ the frequency variable and is classical,
see [9, 12]. With these notations, we may rewrite the action ofT on our curveletγµ as

(Tγµ)(x) =
∫

eiφµ(x)·ξeiδ(x,ξ)a(x, ξ)γ̂µ(ξ) dξ. (17)

Now for a fixed value of the parameterµ, we introduce the decomposition

T = T2,µT1,µ,

where withb(x, ξ) = eiδ(φ−1
µ (x),ξ)a(φ−1

µ (x), ξ),

(T1,µf)(x) =
∫

eix·ξb(x, ξ)f̂(ξ) dξ, (T2,µf)(x) = f(φµ(x)). (18)

In effect, this decomposition allows the separate study of the nonlinearities in frequency
ξ and spacex in the phase functionΦ. The point is that bothT1,µ andT2,µ are sparse
in a curvelet tight frame—only for very different reasons.

• Because the frequency support of a curveletγµ is effectively a thin dyadic rect-
angle of sidelengths about2j in the directionξµ and about2j/2 in the orthogonal
direction, the “phase perturbation”δ is small over such rectangles. Therefore,
the termb(x, ξ) is essentially nonoscillatory over the support ofγ̂µ and T1,µ

behaves like a pseudo-differential (local) operator. The outputT1,µγµ is then
essentially a curvelet at the same scale, orientation and location. Note that this
frequency localization idea is known in the literature as the the Second Dyadic
Decomposition, see [12] and references therein.
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• To understand why a smooth change of coordinates is a sparse mapping, we
need to use the spatial localization of curvelet elements. Roughly speaking, a
curvelet is an oscillatory needle with length about2−j/2 and width2−j and
qualitatively, it is clear that a warped curvelet would also be just that; i.e. an
oscillatory needle whose width approximately equals the square of its length.
Mathematically speaking, [2] proves that the ‘warped curvelet’γµ ◦φµ is nearly
a curvelet in the sense that the coefficients of its expansion are`p-summable for
anyp > 0.

There is a very interesting phenomenon which occurs here and we now highlight.
Instead of curvelets, we may want to consider general scaling matrices of the form
Dj = diag(2j , 2jα), 0 ≤ α ≤ 1. We would then obtain tight frames whose elements
would be needles with length about2−jα and width2−j . We could then consider
representing an FIO with basis elements exhibiting such arbitrary scaling ratios.

• T1 is sparse if and only if the frequency support of our anisotropic elements are
supported near elongated rectangles with a scaling ratio obeyingα ≤ 1/2.

• While T2 is sparse if and only if the effective support of our anistropic elements
is not too elongated and obeysα ≥ 1/2.

To fix ideas, suppose on the one hand thatα = 1, which essentially gives tight frames
of wavelets. Then in a wavelet tight-frame,T2,µ would be sparse butT1,µ would not
because wavelets do not have a sufficiently fine frequency localization. On the other
hand, suppose thatα = 0 which essentially gives tight frames of ridgelets. Then
T1,µ would be sparse but notT2,µ as a warped ridgelet does not look like another
ridgelet. The parabolic scalingα = 1/2 is the only scaling for which both operators
are sparsifiedsimultaneously.

6 Discussion

While working on this project, we became aware of the work of Smith [10, 11] which
addresses topics such as the description of Hardy spaces for FIOs and the construction
of parametrices for nonsmooth second-order linear wave equations. Especially, [11]
alludes to estimates similiar to those developed in Theorem 4.1 although we have not
been able to find proofs of such results, see also [6]. We find the connection with
this line of research in pure harmonic analysis nevertheless stimulating. Our agenda
is of course very different here and corresponds to the viewpoint of Computational
Harmonic Analysis: namely, we are interested in a remarkable mathematical statement
which says that curvelets provide optimally sparse representations of FIOs. As we
mentioned earlier, the consequences are far reaching and we now briefly explore some
of them.

The development and study of FIOs is motivated by the connection with the field
of partial differential equations. It is well-known that FIOs are, in some sense, almost
solution operators of linear hyperbolic systems [13]. Therefore, the results presented
here raise a tantalizing perspective:for large classes of hyperbolic PDEs, the solution
operator is sparse in a curvelet frame,while at the same time, such operators are of
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course known to be dense in Fourier bases or in classical muliscale systems such as
wavelets. Work in progress attempts to exploit this feature to develop fast multiscale
solvers (based on fast digital curvelet transforms) for linear hyperbolic problems. We
hope to report on this in a future publication.
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Mathematics at UCLA and especially Mark Green and Eilish Hathaway for their warm
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