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Abstract

This paper argues that curvelets provide a powerful tool for representing very general linear symmetric
systems of hyperbolic differential equations. Curvelets are a recently developed multiscale system [10, 7]
in which the elements are highly anisotropic at fine scales, with effective support shaped according to
the parabolic scaling principle width ≈ length2 at fine scales. We prove that for a wide class of linear
hyperbolic differential equations, the curvelet representation of the solution operator is both optimally
sparse and well organized.

• It is sparse in the sense that the matrix entries decay nearly exponentially fast (i.e. faster than any
negative polynomial),

• and well-organized in the sense that the very few nonnegligible entries occur near a few shifted
diagonals.

Indeed, we show that the wave group maps each curvelet onto a sum of curvelet-like waveforms whose
locations and orientations are obtained by following the different Hamiltonian flows—hence the diagonal
shifts in the curvelet representation. A physical interpretation of this result is that curvelets may be
viewed as coherent waveforms with enough frequency localization so that they behave like waves but at
the same time, with enough spatial localization so that they simultaneously behave like particles.
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1 Introduction

This paper is concerned with the representation of symmetric systems of linear hyperbolic differential equa-
tions of the form

∂u

∂t
+
∑

k

Ak(x)
∂u

∂xk
+B(x)u = 0, u(0, x) = u0(x), (1.1)

where u is an m-dimensional vector and x ∈ Rn. The matrices Ak and B may depend on the spatial variable
x, and the Ak’s are symmetric. Linear hyperbolic systems are ubiquitous in the sciences and a classical
example are the equations for acoustic waves which read

∂ρ
∂t +∇ · (ρ0u) = 0
ρ0

∂u
∂t +∇(c20ρ) = 0,

(1.2)

where u and ρ are the velocity and density disturbances respectively. (Here, ρ0 = ρ0(x) is the density and
c0 = c0(x) is the speed of sound.) Other well-known examples include Maxwell’s equations of electrodynamics
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and the equations of linear elasticity. All the results presented in this paper equally apply to higher-order
scalar wave equations, e.g., of the form

∂2u

∂t2
−
∑
ij

aij(x)
∂2u

∂xj∂xk
= 0, u(0, x) = u0(x),

∂u

∂t
(0, x) = u1(x),

(where u is now a scalar and aij(x) is taken to be symmetric and positive definite) as it is well-known that
such single second-order equations can be reduced to a symmetric system of first-order equations (1.1) by
appropriate changes of variables.

1.1 About representations

We are interested in representations of the solution operator E(t) to the system (1.1)

u(t, ·) = E(t)u0,

which may be expressed as an integral involving the so-called Green’s function

u(t, x) =
∫
E(t;x, y)u0(y) dy.

To introduce the concept of representation, suppose that the coefficient matrices do not depend on x. As
is well-known, the Fourier transform is a powerful tool for studying differential equations in this setting.
Indeed, in the Fourier domain, (1.1) takes the form

(∂t + i
∑

k

Akξk +B)û(t, ξ) = 0;

in short, (1.1) reduces to a system of ordinary differential equations which can be solved analytically. This
shows the power of the representation; in the frequency domain, the solution operator is diagonal and the
study becomes ridiculously simple.

These desirable properties are very fragile, however. Both mathematicians and computational scientists
know that Fourier methods are not really amenable to differential equations with variable coefficients, and
that we need to find alternatives. Instead of considering the evolution of Fourier coefficients, we may want
to think, instead, of the action of the propagation operator E(t) on other types of basis elements. This
connects with the viewpoint of modern harmonic analysis whose goal is to develop representations, e.g. an
orthonormal basis (fn) of L2(Rn), say, in which the solution operator

E(t;n, n′) = 〈fn, E(t)fn′〉 (1.3)

is as simple as possible; that is, such that E(t)fn is a sparse superposition of those elements fn′ . Such sparse
representations are extremely significant both in mathematical analysis, where sparsity allows for sharper
inequalities and in numerical applications where sparsity allows for faster algorithms.

• In the field of mathematical analysis, for example, Calderón introduced what one would nowadays
call the Continuous Wavelet Transform (CWT) in which objects are represented as a superpositions
of simple elements of the form ψ((x − b)/a), with a > 0 and b ∈ Rn; i.e, objects are represented
as a superposition of dilates and translates of a single function ψ. These elements proved to be
almost eigenfunctions of large classes of operators, the Calderón-Zygmund operators which are special
types of singular integrals, some of which arising in connection with elliptic problems. It was later
gradually realized that tools like atomic decompositions of Hardy spaces [18, 30] and orthonormal
bases of Wavelets [23, 24] provide a setting in which some aspects of the mathematical analysis of these
operators is dramatically eased.
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• Clever representation of scientific and engineering computations can make previously intractable com-
putations tractable. Here, sparsity may allow the design of fast matrix multiplication and/or fast
matrix inversion algorithms. For example, Beylkin, Coifman and Rokhlin [2] exploited the sparsity
of those singular integrals mentioned above, and showed how to use wavelet bases to compute such
integrals with very low complexity algorithms.

In short, a single representation, namely, the wavelet transform provides sparse decompositions of large
classes of operators simultaneously.

1.2 Limitations of Classical Multiscale Ideas

Our goal in this paper is to find a representation which provides sparse representations of the solution oper-
ators to fairly general classes of systems of hyperbolic differential equations. Now the last two decades have
seen the widespread development of multiscale ideas such as Multigrid, Fast Multipole Methods, Wavelets,
Finite Elements with or without adaptive refinement, etc. All these representations propose dictionaries
of roughly isotropic elements occurring at all scales and locations; the templates are rescaled treating all
directions in essentially the same way. Isotropic scaling may be successful when the object under study does
not exhibit any special features along selected orientations. This is the exception rather than the rule.

Tools from traditional multiscale analysis are very powerful for representing certain elliptic problems but
unfortunately, they are definitely ill-adapted to hyperbolic problems such as 1.1). Indeed,

1. they fail to sparsify the wave propagation, i.e. the solution operator E(t),

2. and they fail to provide a sparse representation of oscillatory signals which are the solutions of those
equations.

To make things concrete, consider the problem of propagating elastic waves as in geophysics. Consider the
scalar wave equation in two dimensions

∂ttu = c2(x)∆u, (1.4)

where ∆ is the Laplacian defined by ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 (we may take the velocity field to be constant).
To describe the action of the wave group, we assume that the initial condition takes the form of a wavelet
with vanishing initial velocity, say. Then it is clear that at a later time, the wavefield is composed of large
concentric rings (imagine throwing a stone in a lake). Now, it is also clear that many wavelets are needed
to represent the wavefield. In other words, the wavefield is a rather dense superposition of wavelets. Note
that this may be quantified. Suppose that the velocity field is identically equal to one, say, and that the
initial condition is a wavelet at scale 2−j ; that is, of the form 2j/2ψ(2jx) so that in frequency, the energy is
concentrated near the dyadic annulus |ξ| ∼ 2j . Then one would need at least O(2j) wavelets to reconstruct
the wavefield at time t = 1 to within reasonable accuracy.

Our simple example above shows wave-like flows do not preserve the geometry and characteristics of clas-
sical multiscale systems. To achieve sparsity, we need to rethink the geometry of multiscale representations.

1.3 A New Form of Multiscale Analysis

As we will see in section 2, curvelets are waveforms which are highly anisotropic at fine scales, with effective
support obeying the parabolic principle length ≈ width2. Just as for wavelets, there is both a continuous
and a discrete curvelet transform. A curvelet is indexed by three parameters which—adopting a continuous
description of the parameter space—are: a scale a, 0 < a < 1; an orientation θ, θ ∈ [−π/2, π/2) and a
location b, b ∈ R2. At scale a, the family of curvelets is generated by translation and rotation of a basic
element ϕa

ϕa,b,θ(x) = ϕa(Rθ(x− b)).
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Here, ϕa(x) is some kind of directional wavelet with spatial width ∼ a and spatial length ∼
√
a, and with

minor axis pointing in the horizontal direction

ϕa(x) ≈ ϕ(Dax), Da =
(

1/a 0
0 1/

√
a

)
;

Da is a parabolic scaling matrix, Rθ is a rotation by θ radians.
An important property is that curvelets obey the principle of harmonic of analysis which says that it is

possible to analyze and reconstruct an arbitrary function f(x1, x2) as a superposition of such templates. It
is possible to construct tight-frames of curvelets and one can, indeed, easily expand an arbitrary function
f(x1, x2) as a series of curvelets, much like in an orthonormal basis. Continuing at an informal level of
exposition, there is a sampling of the plane (a, b, θ)

aj = 2−j , θj,` = 2π` · 2−bj/2c, Rθj,`
b
(j,`)
k = (k12−j , k22−j/2),

such that with µ indexing the triples (aj , θj,`, b
(j,`)
k ) the collection ϕµ is a tight-frame:

f =
∑

µ

〈f, ϕµ〉ϕµ, ‖f‖22 =
∑

µ

|〈f, ϕµ〉|2. (1.5)

(Note that these formulae allow us to analyze and synthesize arbitrary functions in L2(R2) as a superposition
of curvelets in a stable and concrete way.)

As we have seen, a curvelet is well-localized in space but it is also well-localized in frequency. Recall that
a given scale, curvelets ϕµ are obtained by applying shifts and rotations to a ‘mother’ curvelet ϕj,0,0. In the
frequency domain then

ϕ̂j,0,0(ξ) = 2−3j/4W (2−j |ξ|)V (2bj/2cθ).

Here, W,V are smooth windows compactly supported near the intervals [1, 2] and [−1/2, 1/2] respectively.
Whereas in the spatial domain curvelets live near an oriented rectangle R of length 2−j/2 and width 2−j ,
in the frequency domain, they are located in a parabolic wedge of length 2j and width 2j/2 and whose
orientation is orthogonal to that of R. The joint localization in both space and frequency allows us to think
about curvelets as occupying a ‘Heisenberg cell’ in phase-space with parabolic scaling in both domains.
Figure 1 offers a schematic representation of this joint localization. As we shall see, this microlocal behavior
is key to understanding the properties of curvelet-propagation. Additional details are given in section 2.

1.4 Curvelets and Geometrical Optics

A hyperbolic system can typically be considered in the approximation of high-frequency waves, also known
as geometrical optics. In order to best describe our main result, it is perhaps suitable first to exhibit
the connections between curvelets and geometrical optics. In that setting it is not necessary to describe
the dynamics in terms of the wavefield u(t, x). Only its prominent features are studied: wave fronts, or
equivalently rays. The latter are trajectories (x(t), ξ(t)) in phase-space R2×R2, and are the solutions to the
m Hamiltonian flows (indexed by ν){

ẋ(t) = ∇ξλ
0
ν(x, ξ), x(0) = x0,

ξ̇(t) = −∇xλ
0
ν(x, ξ), ξ(0) = ξ0.

(1.6)

The system (1.6) is also called the bicharacteristic flow and the rays (x(t), ξ(t)) the bicharacteristics. To see
how this system arises, consider the classical high-frequency wave-propagation approximation to a wavefield
u(x, t) of the form

u(x, t) = σ(x, t)eiωΦ(x,t).

where ω is a large parameter; it then follows (after substituting the approximation in the wave equation
(1.1)) that the phase function Φ must obey one of the Hamilton-Jacobi equations (indexed by ν)

∂tΦν + λ0
ν(x,∇xΦν) = 0, (1.7)
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Figure 1: Schematic representation of the support of a curvelet in both space and frequency. In the spatial
domain, a curvelet has an envelope strongly aligned along a specified ‘ridge’ while in the frequency domain,
it is supported near a box whose orientation is aligned with the co-direction of the ridge.

and that the amplitude must obey a transport equation we shall not detail here (see however section 4).
In the above expression (and in the Hamiltonian equations (1.6)), the λ0

ν(x, ξ) are the eigenvalues of the
dispersion matrix

a0(x, ξ) =
∑

k

Ak(x)ξj . (1.8)

It is well-known that the Hamiltonian equations describe the evolution of the wavefront set of the solution
as Φν(t, x(t)) is actually constant along the νth Hamiltonian flow (1.6).

With this background, we are now in a position to qualitatively describe the behavior of the wave-
propagation operator E(t) acting on a curvelet ϕµ. However, we first need to introduce a notion of vector-
valued curvelet since E(t) is acting on vector fields. Let r0ν(x, ξ) be the eigenvector of the dispersion matrix
associated with the eigenvalue λ0

ν(x, ξ). We then define hyper-curvelets by

ϕ(0)
µν (x) =

1
(2π)2

∫
eix·ξr0ν(x, ξ)ϕ̂µ(ξ) dξ. (1.9)

Later in this section, we will motivate this special choice but for now simply observe that ϕ
(0)
µν is a vector-

valued waveform.
Consider then the solution to the wave equation ϕ

(0)
µν (t, x) with initial value ϕ

(0)
µν (x). Our claim is as

follows:

the wave group maps each hyper-curvelet onto another curvelet-like waveform whose location and
orientation are obtained from the corresponding Hamiltonian flow.

To examine this claim, let (xµ, ξµ) be the center of ϕ
(0)
µν in phase-space and define the rotation matrix U(t)

by

U(t)
ξ(t)
|ξ(t)|

=
ξµ
|ξµ|

where (x(t), ξ(t)) is the solution to (1.6) with initial condition (xµ, ξµ). Our claim says that the solution to
the wave equation nearly follows the dynamics of the reduced Hamiltonian flow, i.e.,

ϕ(0)
µν (t, x) = ϕ̃(0)

µν (Uµ(t)(x− xµ(t)) + xµ). (1.10)
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Figure 2: Schematic representation of the action of the wave group on a hyper-curvelet. The new positions
and orientations are given by the Hamiltonian flow. The two waveforms at time 0 and t are not quite the
same although they have very similar profiles.

The point of this paper is that the waveform ϕ̃
(0)
µν has the same strong spatial and frequency localization

properties as the initial curvelet ϕ
(0)
µν itself. For an illustration, see Figure 2.

We now return to the interpretation of a hyper-curvelet. Suppose that r0ν only depends on ξ as in the
case of the acoustic system (1.2)

r00(ξ) =
(
ξ⊥/|ξ|

0

)
, r0±(ξ) =

1√
2

(
±ξ/|ξ|

1

)
.

(Here and below, ξ⊥ denotes the vector obtained from ξ after applying a rotation by 90 degrees). In this
special case, we see that the hyper-curvelet is obtained by multiplying—in the frequency domain—a scalar-
valued curvelet with the eigenvectors of the dispersion matrix

ϕ̂(0)
µν (ξ) = r0ν(ξ)ϕ̂µ(ξ), ν ∈ {+,−, 0}.

This is useful for the curvelet ϕ̂
(0)
µν will essentially follow only one flow, namely, the νth flow. Suppose we

had started, instead, with an initial value of the form ϕµν = ϕµeν , where eν is the canonical basis of R3,
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say. Then our curvelet would have interacted with the three eigenvectors of the dispersion matrix, and
would have ‘split’ and followed the three distinct flows. By forcing ϕ̂

(0)
µν (ξ) to be aligned with r0ν(ξ), we

essentially removed the components associated with the other flows. In the general case (1.9), we build
hyper-curvelets by applying R0

ν , which is now a pseudo-differential operator with symbol r0ν(x, ξ), mapping
scalars to m-dimensional vectors, and independent of time. The effect is of course the same.

Note that when r0ν is independent of x, hyper-curvelets build-up a (vector-valued) tight-frame; letting
[F,G] be the usual inner product over three-dimensional vector fields in L2(R2), the family (ϕ(0)

µν )µν obeys
the reconstruction formula

u =
∑
µ,ν

[u,ϕ(0)
µν ]ϕ(0)

µν (1.11)

and the Parseval relation
‖u‖2L2 =

∑
µ,ν

|[u,ϕ(0)
µν ]|2. (1.12)

Just as one can decompose a scalar field as a superposition of scalar curvelets, one can analyze and synthesize
any wavefield as a superposition of hyper-curvelets in a stable and concrete way. For arbitrary r0ν(x, ξ), this
is, however, in general not true.

We would like to emphasize that although the Hamilton-Jacobi equations only have solutions for small
times, the approximation (1.10) and, more generally, all of our results are valid for all times since the rays
(1.6) are always well-defined, see section 1.6 below for a more detailed discussion.

1.5 Curvelets and Hyperbolic Systems

The previous section gave a qualitative description of the action of the wave group on a curvelet and we we
shall now quantify this fact. The evolution operator E(t) acting on a curvelet ϕ

(0)
µ0ν0 is of course not exactly

another curvelet ϕ
(0)
µ0(t)ν0

which occurs at a displaced location and orientation. Instead, it is a superposition

of curvelets
∑

µ,µ αµνϕ
(0)
µν such that

1. the coefficients (αµν) decay nearly exponentially,

2. and the significant coefficients of this expansion are all located at indices (µ, ν) ‘near’ (µ0(t), ν0). By
near, we mean nearby scales, orientations and locations.

To state the key result of this paper, we need a notion of distance ω between curvelet indices which will
be formally introduced in section 2. Crudely, ω(µ, µ′) is small if and only if both curvelets are at roughly
the same scale, have similar orientation and are at nearby spatial locations. In the same spirit, the distance
ω(µ, µ′) increases as the distance between the scale, angular, and location parameters increases.

For each µ = (j, k, `) and ν = 1, . . . ,m, define the vector-valued curvelets

ϕµν = eνϕµ, (1.13)

where eν is the νth canonical basis vector in Rm. The ϕµν ’s inherit the tight-frame property (1.11)–(1.12).
We would like to again remind the reader that these vector-valued curvelets are simpler and different from
the hyper-curvelets ϕ

(0)
µν defined in the previous section. Consider now the representing the operator E(t) in

a tight-frame of vector-valued curvelets, namely,

E(t;µ, ν;µ′, ν′) = 〈ϕµν , E(t)ϕµ′ν′〉. (1.14)

We will refer to E(t;µ, ν;µ′, ν′) or simply E as the curvelet matrix of E(t), with row index µ, ν and column
index µ′, ν′. Decompose the initial wavefield u0 =

∑
µ,ν cµνϕµν . Then one can express the action of E(t) on

u0 in the curvelet domain as

E(t)u0 =
∑
µν

cµν(t)ϕµν , cµν(t) =
∑
µ′,ν′

E(t;µ′, ν′;µ, ν)cµ′ν′
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with convergence in L2(R2,Cm). In short, the curvelet matrix maps the curvelet coefficients of the initial
wavefield u0(·) into those of the solution u(t, ·) at time t.

Theorem 1.1. Suppose that the coefficients Ak(x) and B(x) of the hyperbolic system are C∞, with uniform
smoothness constants, and that the multiplicity of the eigenvalues of the dispersion matrix

∑
k Ak(x)ξk is

constant in x and ξ. Then

• The matrix E is sparse. Suppose a is either a row or a column of E, and let |a|(n) be the n-largest
entry of the sequence |a|, then for each M > 0, |a|(n) obeys

|a|(n) ≤ CtM · n−M . (1.15)

• The matrix E is well-organized. For each N > 0, the coefficients obey

|E(t;µ, ν;µ′, ν′)| ≤ CtN ·
m∑

ν′′=1

ω(µ, µ′ν′′(t))
−N . (1.16)

Here µν(t) is the curvelet index µ flown along the νth Hamiltonian system.

Both constants CtM and CtN grow in time at most like C1e
C2t for some C1, C2 > 0 depending on M , resp.

N .

In effect, the curvelet matrix of the solution operator resembles a sum of m permutation matrices where
m is the order of the hyperbolic system; first, there are significant coefficients along m shifted diagonal
and second, coefficients away from these diagonals decay nearly exponentially; i.e. faster than any negative
polynomial. Now just as wavelets provide sparse representations to the solution operators to certain elliptic
differential equations, our theorem shows that curvelets provide an optimally sparse representation of solution
operators to systems of symmetric hyperbolic equations.

We can also resort to hyper-curvelets as defined in the previous section and formulate a related result
where the curvelet matrix is sparse around a single shifted diagonal. This refinement approximately decouples
the evolution into polarized components and will be made precise later.

To grasp the implications of Theorem 1.1, consider the following corollary:

Corollary 1.2. Consider the truncated operator AB obtained by keeping m · B elements per row—the B
closest to each shifted diagonal in the sense of the pseudo-distance ω. Then the truncated matrix obeys

‖A−AB‖L2→L2 ≤ CM ·B−M , (1.17)

for each M > 0.

The proof follows from that of Theorem 1.1 by an application of Schur’s lemma and is omitted. Hence,
whereas the Fourier or wavelet representations are dense, curvelets faithfully model the geometry of wave
propagation as only a few terms are needed to represent the action of the wave group accurately.

1.6 Strategy

In his seminal paper [19], Lax constructed approximate solution operators to linear and symmetric hyperbolic
systems, also known as parametrices. He showed that these parametrices are oscillatory integrals in the
frequency domain which are commonly referred to as Fourier integral operators (FIO) (the development and
study of FIOs is motivated by the connection). An operator T is said to be an FIO if it is of the form

Tf(x) =
∫
eiΦ(x,ξ)σ(x, ξ)f̂(ξ) dξ. (1.18)

We suppose the phase function Φ and the amplitude σ obey the following standard assumptions [30]:
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• the phase Φ(x, ξ) is C∞, with uniform smoothness constants in x, homogeneous of degree 1 in ξ, i.e.
Φ(x, λξ) = λΦ(x, ξ) for λ > 0, and with Φxξ = ∇x∇ξΦ, obeys the nondegeneracy condition

|det Φxξ(x, ξ)| > c > 0, (1.19)

uniformly in x and ξ;

• the amplitude σ is a symbol of order m, which means that σ is C∞, and obeys

|∂α
ξ ∂

β
xσ(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|. (1.20)

Lax’s insight is that the solution of the initial value problem for a variable coefficient hyperbolic system
can be well approximated by a superposition of integrals of the form (1.18) with matrix-valued amplitudes
of order 0. The phases of these FIO’s are, of course, those solving the Eikonal equations (1.7). Hence, a
substantial part of our argument will be about proving that curvelets sparsify FIO’s. Now an important
aspect of this construction is that this approximation is only valid for small times whereas our theorem
is valid for all times. The reason is that the solutions to the Eikonal equations (1.7) are not expected to
be global in time, because Φν would become multi-valued when rays originating from the same point x0

cross at a later time. This typically happens at cusp points, when caustics start developing. We refer the
reader to [15, 34]. Because, we are interested in a statement valid for all times, we need to bootstrap the
construction of the FIO parametrix by composing the small time FIO parametrix with itself. Now this
creates an additional difficulty. Each parametrix convects a curvelet along m flows, and we see that after
each composition, the number of curvelets would be multiplied by m, see section 4.1 for a proper discussion.
This would lead to matrices with poor concentration properties. Therefore, the other part of the argument
consists in decoupling the equations so that this phenomenon does not occur. In summary, the general
architecture of the proof of Theorem 1.1 is as follows:

• We first decompose the wave-field into m-one way components, i.e. components which essentially travel
along only one flow. We show that this decomposition is sparse in tight-frames of curvelets.

• Second, we show that curvelet representations of FIO’s are optimally sparse in tight-frame of curvelets,
a result of independent interest.

As a side remark, we would like to point out that the result about optimally sparse representations of
FIO’s was announced without a proof in the companion paper [4]. This paper, however, gives the first proof
of this optimality result.

As the title of this paper suggests, we claim that curvelets provide optimally sparse representations of
wave propagators just as wavelets are often said to provide the sparsest representation of large classes of
pseudo-differential operators. Admittedly, this is an abuse since a rigorous justification would need to argue
that there are no bases or tight frames which would provide faster decay; that is, in which the matrix would
decay faster than any negative polynomial simultaneously over all propagators with sufficiently smooth
coefficients. We have not pursued this issue here although there is considerable evidence supporting our
claim; for example, it is likely that this is linked to the impossibility of approximating C∞ functions at
arbitrary high rates.

1.7 Inspiration and Relation to Other Work

Underlying our results is a mathematical insight concerning the central role for the analysis of hyperbolic
differential equations, played by the parabolic scaling, in which analysis elements are supported in elongated
regions obeying the relation width ≈ length2. In fact, curvelets imply the same tiling of the frequency
plane as the Second Dyadic Decomposition (SDD), a construction introduced in the seventies by Stein and
Fefferman [16, 30], originally for the purpose of understanding boundedness of Riesz spherical means, and
later widely adapted to the study of various Fourier integral operators. More specifically, we would like to
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single out the work of Hart Smith with which we became familiar while working on this project. Smith [27]
used parabolic scaling to define function spaces preserved by Fourier integral operators [27], and to analyze
the behavior of wave equations with low-regularity coefficients [28]. The latter reference actually develops
curvelet-like systems which provide a powerful tool to derive so-called sharp Strichartz estimates for solutions
to such equations in space dimensions d = 2, 3 (a Strichartz estimate is a bound on the norm of the solution
in some appropriate functional space, e.g. Lp). We find the connection with the work of Smith especially
stimulating. From a broader viewpoint, the literature on the subject indicates that curvelets are in some
sense compatible with a long tradition in harmonic analysis.

The fact that the action of a FIO should be seen as a ‘rearrangement of wave packets’ was discovered by
Córdoba and Fefferman in their visionary paper [11]. They show how simple proofs of L2 boundedness and
the Garding inequality follow in a straightforward way from a decomposition into Gaussian wave packets.

Next, there is of course the inspiration of modern computational harmonic analysis (CHA) whose agenda
is the development of orthobases, tight-frames, which are ‘optimal’ for representing objects (operators,
functions) of scientific interest together with rapid algorithms to compute such representations. The point
of view here is to develop new mathematical ideas and and turn these ideas into effective algorithms and
these effective algorithms into effective and targeted applications. At the beginning of this introduction,
we mentioned an instance of this scientific vision: (1) wavelets provide sparse representations of objects
with punctuated smoothness and of large classes of singular integrals and other pseudo-differential operators
[23, 24]; (2) there are fast discrete wavelet transforms operating in O(N) for a signal of length N [22]; (3)
this creates an opportunity for targeted applications in signal processing where wavelets allow for better
compression [12], scientific computing where wavelets allow for faster algorithms [2], and for statistical
estimation where wavelets allow for sharper reconstructions [13]. This vision was perhaps championed in
[2] where (1)–(3) were combined to demonstrate how one can use the wavelet transform to compute certain
types of singular integrals in a number of operations of the order of C(ε) ·N logN where C(ε) is a constant
depending upon the desired accuracy ε.

1.8 Significance

We would like to mention how we see our work fit with the vision described above.

• Curvelets and wavefronts. Curvelets are ideal for representing wavefront phenomena [8], or objects
which display curve-punctuated smoothness —smoothness except for discontinuity along a general curve
with bounded curvature [6, 7]. This fact originally motivated their construction [6, 7]. For example,
[7] established that curvelets provide the sparsest representations of functions which are C2 away from
piecewise C2 edges. Such representations are nearly as sparse as if the object were not singular and
turn out to be far more sparse than the wavelet decomposition of the object.

Hence, we see that curvelets provide the unique opportunity for having a representation giving enhanced
sparsity of wave groups, and simultaneously of the solution space. We believe that this will eventually be
of great practical significance for applications in fields which are great consumers of these mathematical
models, e.g., seismic imaging.

• New ideas for new numerical solvers. Clearly, Theorem 1.1 may serve as a basis for faster geometric
multiscale PDE solvers. In fact, this paper is the first of a projected series showing how one can
exploit the structure of the curvelet transform and the enhanced sparsity of wave groups to derive
new numerical low-complexity algorithms for accurately computing the solution to large classes of
differential equations, see the concluding section for a discussion.

• Digital curvelet transforms. In order to deploy curvelet-like ideas in practical applications, one would
need a digital notion of curvelet transform which (1) would be rapidly computable and (2) would be
geometrically faithful in the sense that one would want an accurate digital analog of the corresponding
geometric ideas defined at the level of the continuum. There actually is progress on this front. The
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authors along with Donoho and Ying recently proposed two architectures for a Digital Curvelet Trans-
form, one via Unequispaced Fast Fourier Transforms, and one using a Wedge Wrapping technique [5].
Both are fast algorithms which allow analysis and synthesis of Cartesian arrays as superpositions of
discrete curvelets; for practical purposes, the algorithms run in O(N logN) operations for input array
of size N . Digital curvelets obey sharp frequency and spatial localization.

In short, this paper is an essential piece of a much larger body of work.

1.9 Contents

Section 2 below reviews the construction of Curvelets. Section 3 below examines second-order scalar hyper-
bolic equations and gives a heuristic indicating why the sparsity may be expected to hold. Section 4 links
our main result with properties of FIOs. Section 5 proves that FIO’s are optimally sparse in scalar curvelet
tight-frames. Section 6 discusses implications of this work, namely, in the area of scientific computing.
Finally, proofs of key estimates supporting our main result are given in Section 7.

2 Curvelets

This section briefly introduces tight frames of curvelets, see [7] for more details.

2.1 Definition

We work throughout in R2, with spatial variable x, with ξ a frequency-domain variable, and with r and θ
polar coordinates in the frequency-domain. We start with a pair of windows W (r) and V (t), which we will
call the ‘radial window’ and ‘angular window’, respectively. These are both smooth, nonnegative and real-
valued, with W taking positive real arguments and supported on r ∈ [1/2, 2] and V taking real arguments
and supported on t ∈ [−1, 1]. These windows will always obey the admissibility conditions:

∞∑
j=−∞

W 2(2jr) = 1, r > 0; (2.1)

∞∑
`=−∞

V 2(t− `) = 1, t ∈ R. (2.2)

Now, for each j ≥ j0, we introduce ϕj(x1, x2) defined in the Fourier domain by

ϕ̂j(ξ) = 2−3j/4W (2−j |ξ|) · V (2bj/2cθ) (2.3)

Thus the support of ϕ̂j is a polar ‘wedge’ defined by the support of W and V , the radial and angular windows,
applied with scale-dependent window widths in each direction.

We may think of ϕj as a “mother” curvelet at scale 2−j in the sense that all curvelets at that scaled are
obtained by rotations and translations of ϕj . Introduce

• the equispaced sequence of rotation angles θj,` = 2π · 2−bj/2c · `, 0 ≤ ` < Lj = 2bj/2c,

• and the sequence of translation parameters k = (k1, k2) ∈ Z2.

With these notations, we define curvelets (as function of x = (x1, x2)) at scale 2−j , orientation θj,` and
position b(j,`)k = Rθj,`

(k1 · 2−j/δ1, k2 · 2−j/2/δ2) for some adequate constants δ1, δ2 by

ϕj,k,`(x) = ϕj

(
R−θj,`

(x− b
(j,`)
k )

)
.
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As in wavelet theory, we also have coarse scale elements. We introduce the low-pass window W0 obeying

|W0(r)|2 +
∑
j≥0

|W (2−jr)|2 = 1,

and for k1, k2 ∈ Z, define coarse scale curvelets as

Φj0,k(x) = Φj0(x− 2−j0k), Φ̂j0(ξ) = 2−j0W0(2−j0 |ξ|).

Hence, coarse scale curvelets are nondirectional. The ‘full’ curvelet transform consists of the fine-scale direc-
tional elements (ϕj,`,k)j≥j0,`,k and of the coarse-scale isotropic father wavelets (Φj0,k)k. For our purposes, it
is the behavior of the fine-scale directional elements that matters.

In the remainder of the paper, we will use the generic notation (ϕµ)µ∈M to index the elements of the
curvelet tight-frame. The dyadic-parabolic subscript µ stands for the triplet (j, k, `). We will also make use
of the convenient notations

• xµ = b
(j,`)
k is the center of ϕµ in space.

• θµ = θj,` is the orientation of ϕµ with respect to the vertical axis in x.

• ξµ = (2j cos θµ, 2j sin θµ) is the center of ϕ̂µ in frequency.

• eµ = ξµ/|ξµ| indicates the codirection of ϕµ.

2.2 Properties

We now list a few properties of the curvelet transform which will play an important role throughout the
remainder of this paper.

1. Tight-frame. Much like in an orthonormal basis, we can easily expand an arbitrary function f(x1, x2) ∈
L2(R2) as a series of curvelets: we have a reconstruction formula

f =
∑

µ

〈f, ϕµ〉ϕµ,

with equality holding in an L2 sense; and a Parseval relation∑
µ

|〈f, ϕµ〉|2 = ‖f‖2L2(R2), ∀f ∈ L2(R2).

2. Parabolic scaling. The frequency localization of ϕj implies the following spatial structure: ϕj(x) is of
rapid decay away from an 2−j by 2−j/2 rectangle with minor axis pointing in the horizontal direction.
In short, the effective length and width obey the anisotropy scaling relation

length ≈ 2−j/2, width ≈ 2−j ⇒ width ≈ length2. (2.4)

3. Oscillatory behavior. As is apparent from its definition, ϕ̂j is actually supported away from the
vertical axis ξ1 = 0 but near the horizontal ξ2 = 0 axis. In a nutshell, this says that ϕj(x) is oscillatory
in the x1-direction and lowpass in the x2-direction. Hence, at scale 2−j , a curvelet is a little needle
whose envelope is a specified ‘ridge’ of effective length 2−j/2 and width 2−j , and which displays an
oscillatory behavior across the main ‘ridge’.
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Figure 3: Curvelet tiling of Phase-Space. The figure on the left represents the sampling in the frequency
plane. In the frequency domain, curvelets are supported near a ‘parabolic’ wedge. The shaded area represents
such a generic wedge. The figure on the right schematically represents the spatial Cartesian grid associated
with a given scale and orientation.

4. Phase-Space Tiling/Sampling. We can really think about curvelets as Heisenberg tiles of minimum
volume in phase-space. In x, the essential support of ϕµ has size O(2−j × 2−j/2). In frequency, the
support of ϕ̂µ has size O(2j/2 × 2j). The net volume in phase-space is therefore

O(2−j × 2−j/2) ·O(2j/2 × 2j) = O(1),

which is in accordance with the uncertainty principle. The parameters (j, k, `) of the curvelet transform
induce a new non-trivial sampling of phase-space, Cartesian in x, polar in ξ, and based on the parabolic
scaling.

5. Complex-valuedness. Since curvelets do not obey the symmetry ϕ̂µ(−ξ) = ϕ̂µ(ξ), ϕµ is complex-
valued. There exists a related construction for real-valued curvelets by simply symmetrizing the con-
struction, see [7]. The complex-valued transform is better adapted to the purpose of this paper.

Figure 3 summarizes the key components of the construction.

2.3 Curvelet Molecules

We introduce the notion of curvelet molecule; our objective, here, is to encompass under this name a wide
collection of systems which share the same essential properties as the curvelets we have just introduced. Our
formulation is inspired by the notion of ‘vaguelettes’ in wavelet analysis [24]. Our motivation for introducing
this concept is the fact that operators of interest do not map curvelets into curvelets, but rather into these
molecules. Note that the terminology ‘molecule’ is somewhat standard in the literature of harmonic analysis
[18].

Definition 2.1. A family of functions (mµ)µ is said to be a family of curvelet molecules with regularity R
if (for j > 0) they may be expressed as

mµ(x) = 23j/4a(µ)
(
D2−jRθµ

x− k′
)
,
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where k′ = (k1
δ1
, k2

δ2
) and where for all µ, the a(µ)’s verify the following properties:

• Smoothness and spatial localization: for each |β| ≤ R, and each M = 0, 1, 2 . . ., there is a constant
CM > 0 such that

|∂β
xa

(µ)(x)| ≤ CM · (1 + |x|)−M . (2.5)

• Nearly vanishing moments: for each N = 0, 1, . . . , R, there is a constant CN > 0 such that

|â(µ)(ξ)| ≤ CN ·min(1, 2−j + |ξ1|+ 2−j/2|ξ2|)N . (2.6)

Here, the constants may be chosen independently of µ so that the above inequalities hold uniformly over µ.
There is of course an obvious modification for the coarse scale molecules which are of the form a(µ)(x− k′)
with a(µ) as in (2.5).

This definition implies a series of useful estimates. For instance, consider θµ = 0 so that Rθµ
is the

identity (arbitrary molecules are obtained by rotations). Then, mµ obeys

|mµ(x)| ≤ CM · 23j/4 ·
(

1 + |2jx1 −
k1

δ1
|+ |2j/2x2 −

k2

δ2
|
)−M

(2.7)

for each M > 0 and |β| ≤ R, and similarly for its derivatives

|∂β
xmµ(x)| ≤ CM · 23j/4 · 2(β1+β2/2)j ·

(
1 + |2jx1 −

k1

δ1
|+ |2j/2x2 −

k2

δ2
|
)−M

. (2.8)

Another useful property is the almost vanishing moments property which says that in the frequency plane,
a molecule is localized near the dyadic corona {2j ≤ |ξ| ≤ 2j+1}; |m̂µ(ξ)| obeys

|m̂µ(ξ)| ≤ CN · 2−3j/4 ·min(1, 2−j(1 + |ξ|))N , (2.9)

which is valid for every N ≤ R, which gives the frequency localization

|m̂µ(ξ)| ≤ CN · 2−3j/4 · |Sµ(ξ)|N (2.10)

where for µ0 = (j, 0, 0),

Sµ0(ξ) = min(1, 2−j(1 + |ξ|)) · (1 + |2−jξ1|+ |2−j/2ξ2|)−1. (2.11)

For arbitrary µ, Sµ is obtained from Sµ0 by a simple rotation of angle θµ, i.e. Sµ0(Rθµ
ξ). Similar estimates

are available for the derivatives of ϕ̂µ.
In short, a curvelet molecule is a needle whose envelope is supported near a ridge of length about 2−j/2

and width 2−j and which displays an oscillatory behavior across the ridge. It is easy to show that curvelets
as introduced in the previous section are indeed curvelet molecules for arbitrary degrees R of regularity.

2.4 Near Orthogonality of Curvelet Molecules

Curvelets are not necessarily orthogonal to each other1, but in some sense they are almost orthogonal. As we
show below, the inner product between two molecules mµ and pµ′ decays nearly exponentially as a function
of the ‘distance’ between the subscripts µ and µ′.

This notion of distance in phase-space, tailored to curvelet analysis, is to be understood as follows. Given
a pair of indices µ = (j, k, `), µ′ = (j′, k′, `′), define the dyadic-parabolic pseudo-distance

ω(µ, µ′) = 2|j−j′| ·
(
1 + min(2j , 2j′) d(µ, µ′)

)
, (2.12)

1It is an open problem whether orthobases of curvelets exist or not.
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where
d(µ, µ′) = |θµ − θµ′ |2 + |xµ − xµ′ |2 + |〈eµ, xµ − xµ′〉|.

Angle differences like θµ − θµ′ are understood modulo π. As introduced earlier, eµ is the codirection of the
first molecule, i.e., eµ = (cos θµ, sin θµ).

The pseudo-distance (2.12) is a slight variation on that introduced by Smith [28]. We see that ω increases
by at most a constant factor every time the distance between the scale, angular, and location parameters
increases. The extension of the definition of ω to arbitrary points (x, ξ) and (x′, ξ′) is straightforward.
Observe that the extra term |〈eµ, xµ−xµ′〉| induces a non-Euclidean notion of distance between xµ and xµ′ .
The following properties of ω are proved in section A.1. (The notation A � B means that C1 ≤ A/B ≤ C2

for some constants C1, C2 > 0.)

Proposition 2.2. 1. Symmetry: ω(µ, µ′) � ω(µ′, µ).

2. Triangle inequality: d(µ, µ′) ≤ C · (d(µ, µ′′) + d(µ′′, µ′)) for some constant C > 0.

3. Composition: for every integer N > 0, and some positive constant CN∑
µ′′

ω(µ, µ′′)−N · ω(µ′′, µ′)−N ≤ CN · ω(µ, µ′)−(N−1).

4. Invariance under Hamiltonian flows: ω(µ, µ′) � ω(µν(t), µ′ν(t)).

We can now state the almost orthogonality result

Lemma 2.3. Let (mµ)µ and (pµ′)µ′ be two families of curvelet molecules with regularity R. Then for
j, j′ ≥ 0,

|〈mµ, pµ′〉| ≤ CN · ω(µ, µ′)−N . (2.13)

for every N ≤ f(R) where f(R) goes to infinity as R goes to infinity.

Proof. Throughout the proof of (2.13), it will be useful to keep in mind that A ≤ C · (1 + |B|)−M for every
M ≤ 2M ′ is equivalent to A ≤ C · (1 + B2)−M for every M ≤ M ′. Similarly, if A ≤ C · (1 + |B1|)−M and
A ≤ C · (1 + |B2|)−M for every M ≤ 2M ′, then A ≤ C · (1 + |B1| + |B2|)−M for every M ≤ M ′. Here and
throughout, the constants C may vary from expression to expression.

For notational convenience put ∆θ = θµ − θµ′ and ∆x = xµ − xµ′ . We abuse notation by letting mµ0

be the molecule a(µ)(D2−jRθµ
x), i.e., mµ0 is obtained from mµ by translation to that it is centered near the

origin. Put Iµµ′ = 〈mµ, pµ′〉. In the frequency domain, Iµµ′ is given by

Iµµ′ =
1

(2π)2

∫
m̂µ0(ξ)p̂µ′0

(ξ) e−i(∆x)·ξ dξ.

Put j0 to be the minimum of j and j′. The Appendix shows that∫
|Sµ0(ξ)Sµ′0

(ξ)|N dξ ≤ C · 23j/4+3j′/4 · 2−|j−j′|N ·
(
1 + 2j0 |∆θ|2

)−N
, (2.14)

where Sµ0 is defined in equation (2.11). Therefore, the frequency localization of the curvelet molecules (2.10)
gives ∫

|m̂µ0(ξ)| |p̂µ′0
(ξ)| dξ ≤ C · 2−3j/4−3j′/4 ·

∫
|Sµ0(ξ)Sµ′0

(ξ)|N dξ

≤ C · 2−|j−j′|N ·
(
1 + 2j0 |∆θ|2

)−N
. (2.15)

This inequality explains the angular decay. A series of integrations by parts will introduce the spatial decay,
as we now show.
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The partial derivatives of m̂µ obey

|∂α
ξ m̂µ(ξ)| ≤ C · 2−3j/4 · 2−j(α1+

α2
2 ) · |Sµ(ξ)|N .

Put ∆ξ to be the Laplacian in ξ. Because p̂µ′ is misoriented with respect to eµ, simple calculations show
that

|∆ξp̂µ′(ξ)| ≤ C · 2−3j′/4 · 2−j′ · |Sµ′(ξ)|N ,

| ∂
2

∂ξ21
p̂µ′(ξ)| ≤ C · 2−3j′/4 · (2−2j′ + 2−j′ | sin(∆θ)|2) · |Sµ′(ξ)|N .

Recall that for t ∈ [−π/2, π/2], 2/π · |t| ≤ | sin t| ≤ |t|, so we may just as well replace | sin(∆θ)| by |∆θ| in
the above inequality. Set

L = I − 2j0∆ξ −
22j0

1 + 2j0 |∆θ|2
∂2

∂ξ21
,

On the one hand, for each k, Lk(m̂µp̂µ′) obeys

|Lk(m̂µp̂µ′)(ξ)| ≤ C · 2−3j/4−3j′/4 · |Sµ(ξ)|N · |Sµ′(ξ)|N .

On the other hand

Lke−i(∆x)·ξ = [1 + 2j0 |∆x|2 +
22j0

1 + 2j0 |∆θ|2
|〈eµ,∆x〉|2]ke−i(∆x)·ξ.

Therefore, a few integrations by parts give

|Iµµ′ | ≤ C · 2−|j−j′|N ·
(
1 + 2j0 |θµ − θµ′ |2

)−N

·
(

1 + 2j0 |∆x|2 +
22j0

1 + 2j0 |∆θ|2
|〈eµ,∆x〉|2

)−N

,

and then

|Iµµ′ | ≤ C · 2−|j−j′|M ·
(

1 + 2j0(|∆θ|2 + |∆x|2) +
22j0

1 + 2j0 |∆θ|2
|〈eµ,∆x〉|2

)−N

.

One can simplify this expression by noticing that

(1 + 2j0 |∆θ|2) +
22j0 |〈eµ,∆x〉|2

1 + 2j0 |∆θ|2
&
√

1 + 2j0 |∆θ|2 2j0 |〈eµ,∆x〉|√
1 + 2j0 |∆θ|2

= 2j0 |〈eµ,∆x〉|.

This yields equation (2.13) as required.

Remark. Assume that one of the two terms or both terms are coarse scale molecules, e.g. pµ′ , then the
decay estimate is of the form

|〈mµ, pµ′〉| ≤ C · 2−jN ·
(
1 + |xµ − xµ′ |2 + |〈eµ, xµ − xµ′〉|

)−N
.

For instance, if they are both coarse scale molecules, this would give

|〈mµ, pµ′〉| ≤ C · (1 + |xµ − xµ′ |)−N
.

The following result is a different expression for the almost-orthogonality, and will be at the heart of the
sparsity estimates for FIO’s.
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Lemma 2.4. Let (mµ)µ and (pµ)µ be two families of curvelet molecules with regularity R. Then for each
p > p∗,

sup
µ

∑
µ′

|〈mµ, pµ′〉|p ≤ Cp.

Here p∗ → 0 as R → ∞. In other words, for p > p∗, the matrix Iµµ′ = (〈mµ, pµ′〉)µ,µ′ acting on sequences
(αµ) obeys

‖Iα‖`p ≤ Cp · ‖α‖`p .

Proof. Put as before j0 = min(j, j′). The appendix shows that∑
µ∈Mj′

(
1 + 2j0(d(µ, µ′)

)−Np ≤ C · 22|j−j′| (2.16)

provided that Np > 2. We then have∑
µ′

|Iµµ′ |p ≤ C ·
∑
j′∈Z

2−2|j−j′|Np · 22|j−j′| ≤ Cp,

provided again that Np > 2.
Hence we proved that for p ≤ 1, I is a bounded operator from `p to `p. We can of course interchange the

role of the two molecules and obtain
sup
µ′

∑
µ

|〈mµ, pµ′〉|p ≤ Cp.

For p = 1, the above expression says that I is a bounded operator from `∞ to `∞. By interpolation, we then
conclude that I is a bounded operator from `p to `p for every p.

3 Heuristics

This section explains the organization of the argument underlying the proof of the main result, namely,
Theorem 1.1, and gives the main reasons why curvelets are special.

3.1 Architecture of the proof of the main result

• Decoupling into polarized components. The first step is to decouple the wavefield u(t, x) into m one-way
components fν(t, x)

u(t, x) =
m∑

ν=1

Rνfν(t, x),

where the Rν are operators mapping scalars tom-dimensional vectors, and independent of time. The fν

will also be called ‘polarized’ components. This allows a separate study of the m flows corresponding to
the m eigenvalues of the matrix

∑m
k=1Ak(x)ξk. In the event these eigenvalues are simple, the evolution

operator E(t) can be decomposed as

E(t) =
m∑

ν=1

Rνe
−itΛνLν + negligible, (3.1)

where the Lν ’s are operators mapping m-dimensional vectors to scalars and the Λν ’s are one-way wave
operators acting on scalar functions. In effect, each operator Eν(t) = e−itΛν convects wave-fronts
and other singularities along a separate flow. The ‘negligible’ contribution is a smoothing operator—
not necessarily small. The composition operators Rν and decomposition operators Lν are provably
pseudo-differential operators, see section 4.2.
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• Fourier integral operator parametrix. We then approximate for small times t > 0 each e−itΛν , ν =
1, . . . ,m, by an oscillatory integral or Fourier integral operator (FIO) Fν(t). Such operators take the
form

Fν(t)f(x) =
∫
eiΦν(t,x,ξ)σν(t, x, ξ)f̂(ξ) dξ,

under suitable conditions on the phase function Φν(t, x, ξ) and the amplitude σν(t, x, ξ). Again, the
identification of the evolution operator Eν(t) = e−itΛν with Fν is valid up to a smoothing and localized
additive remainder. The construction of the so-called parametrix Fν(t) and its properties are detailed
in section 4.3.

Historically [19], the construction of an oscillatory integral parametrix did not involve the decoupling
into polarized components as a preliminary step. When applied directly to the system (4.1), the
construction of the parametrix gives rise to a matrix-valued amplitude σ(t, x, ξ) where all the couplings
are present. This somewhat simpler setting, however, is not adequate for our purpose. The reason
is that we want to bootstrap the construction of a parametrix to large times by composing the small
time FIO parametrix with itself, F (nt) = [F (t)]n. Without decoupling of the propagation modes, each
E(t) or F (t) involves convection of singularities along m families of characteristics or flows. Applying
F (t) again, each flow would artificially split into m flows again, yielding m2 fronts to keep track of. At
time T = nt, that would be at most mn fronts. This flow-splitting situation is not physical and can be
avoided by isolating one-way components before constructing the parametrix. The correct large-time
argument is to consider Eν(nt) for small t > 0 and large integer n as [Eν(t)]n. This expression involves
one single flow, indexed by ν.

• Sparsity of Fourier integral operators. The core of the proof is found in section 5 and consists in
showing that very general FIO’s F (t), including the parametrices Fν(t), are sparse and well-structured
when represented in tight frames of (scalar) curvelets ϕµ. The scalar analog of Theorem 1.1 for FIO’s
is Theorem 5.1—a statement of independent interest. Observe that pseudo-differential operators are a
special class of FIO’s and, therefore, are equally sparse in a curvelet frame.

Section 4.5 assembles key intermediate results and proves Theorem 1.1.

3.2 The parabolic scaling is special

Why is the curvelet parabolic scaling the only correct way to scale a family of wave packets to sparsely
represent wave groups? Assume for a moment that the curvelet scaling width ≈ length2 is replaced with
the more general power-law

width ≈ lengthα, 1 ≤ α ≤ ∞,

and that one has available a tight frame ϕµ of “α-wave-packets.” For example, α = 1 would correspond to
wavelets and α = ∞ to ridgelets [3].

Consider a wave packet ϕµ(x) centered around xµ in space and ξµ in frequency. The action of a Fourier
integral operator on this wave packet can be viewed as the composition of two transformations, (1) non-rigid
convection along the Hamiltonian flow due to the phase factor Φ(x, t, ξ) (or more precisely its linearization
ξ · ∇ξΦ(t, x, ξµ) around ξµ) and (2) microlocal dispersion due to the remainder after linearization and the
amplitude σ(t, x, ξ). Depending upon the size of the essential support in phase-space (controlled by the
value of α), these two transformations may leave the shape of the waveform nearly invariant, or not. We
now argue that the curvelet parabolic scaling, α = 2, offers the correct compromise.

1. Spatial localization. For simplicity, suppose that one can model the convective effect by a smooth
diffeomorphism g(x), so that a wave-packet ϕµ(x) is effectively mapped into ϕµ(g(x)). If we Taylor
expand g(x) around yµ = g−1(xµ), where xµ is the center of φµ(x), we obtain

g(x) = xµ + (x− xµ)g′(yµ) +O((x− xµ)2).
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The first two terms induce an essentially rigid motion, while the remainder is responsible for deforming
the waveform. The requirement for optimal sparsity, as it turns out, is that the extent of the deforma-
tion should not exceed the width of the wave packet. In the case of curvelets, this imposes the correct
condition for ϕµ(g(x)) to remain a ‘molecule’ in the sense defined in section 2, see how equation (5.25)
combines with the molecule estimate (2.7).

If the spatial width is of the order of a = 2−j , then the wave packet should essentially be supported
in a region obeying (x − xµ) ∼ 2−j/2. This is satisfied if and only if 1 ≤ α ≤ 2. In short, any scaling
more isotropic than the parabolic scaling works.

2. Frequency localization. Dispersive effects are already present in the wave equation with constant
velocity c = 1,

∂2u

∂t2
= ∆u,

with initial conditions u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x). In the Fourier domain, the solution is given

by

û(t, ξ) = cos(|ξ|t) û0(ξ) +
sin(|ξ|t)
|ξ|

û1(ξ).

These multipliers are of course associated with the phases Φ±(t, x, ξ) = x · ξ ± t|ξ| (express sine and
cosine in terms of complex exponentials). Linearize Φ± around ξµ, the center of ϕ̂µ, and obtain

Φ±(t, x, ξ) = (x± teµ) · ξ ± t(|ξ| − ξ · eµ),

where eµ = ξµ

|ξµ| . The first term is responsible for convection as before while the second is responsible for
dispersion (transverse to the oscillations of the wave packet). Again, we must invoke more sophisticated
arguments to see that to achieve sparsity, one needs δ(ξ) = |ξ|−ξ ·eµ to be uniformly bounded over the
frequency support of the wave packet ϕ̂µ as to make the remainder eitδ(ξ) non-oscillatory. This would
effectively transform each wave-packet into a proper ‘molecule.’ For curvelets, see how equation (5.6)
depends on the crucial estimate (A.8) about the phase, and how this implies the molecule inequality
(2.10).

It is easy to see that δ(ξ) is zero on the line ξ = const× eµ, and proportional to (ξ·e⊥µ )2

|ξ·eµ| away from it.
If ϕ̂µ is supported around ξµ so that |ξµ| ∼ 2j , and the support lies well away from the origin, then
δ(ξ) ≤ const implies that ξ · e⊥µ be bounded by constant times 2j/2. This is saying that the width of
the support should be at most the square root of the length (in frequency), i.e. 2 ≤ α ≤ ∞. In short,
any scaling more anisotropic than the parabolic scaling works.

In conclusion, only the parabolic scaling, α = 2, allows to formulate a sparsity result like Theorem 1.1
because it meets both requirements of small warping and small dispersion effects.

4 Representation of Linear Hyperbolic Systems

We now return to the main theme of this paper and consider linear initial-value problems of the form

∂u

∂t
+

m∑
k=1

Ak(x)
∂u

∂xk
+B(x)u = 0, u(0, x) = u0(x), (4.1)

where in addition to the properties listed in the introduction, Ak and B together with all their partial
derivatives are uniformly bounded for x ∈ Rn. As explained in section 4.2, we need to make the technical
assumption that for every set of real parameters ξk, the (real) eigenvalues of the matrix

∑
k Ak(x)ξk have

constant multiplicity in x and ξ.
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Our goal is to construct a concrete ‘basis’ of L2(Rn,Cm) in which the evolution is as simple/sparse as
possible. We present a solution based on the newly developed curvelets—which were introduced in section
2—and choose to specialize our discussion to n = 2 spatial dimensions. The reason is twofold: first, this
setting is indeed that in which the exposition of curvelets is the most convenient; and second, this is not a
restriction as similar results would hold in arbitrary dimensions.

4.1 Main result

We need to prove
|E(t;µ, ν;µ′, ν′)| ≤ Ct,N ·

∑
ν′′

ω(µ, µ′ν′′(t))
−N , (4.2)

for some constant Ct,N > 0 growing at most like CNe
KN t for some CN ,KN > 0. The sum over ν′′ indexes

the different flows and takes on as many values as there are distinct eigenvalues λ0
ν′′ .

It is instructive to notice that the estimate (4.2) for t = 0 is already the strongest of its sort on the
off-diagonal decay of the Gram matrix elements for a tight frame of curvelets. For t > 0, equation (4.2)
states that the strong phase-space localization of every curvelet is preserved by the hyperbolic system, thus
yielding a sparse and well-organized structure for the curvelet matrix. These warped and displaced curvelets
are ‘curvelet molecules’ as introduced in section 2.3 because, as we will show, they obey the estimates (2.5)
and (2.6).

The choice of the curvelet family being complex-valued in the above theorem is not essential. E(t) acting
on real-valued curvelets would yield two molecules per flow (upstream and downstream). Keeping track of
this fact in subsequent discussions would be unnecessarily heavy. In the real case, it is clear that the structure
and the sparsity of the curvelet matrix can be recovered by expressing each real curvelet as a superposition
of two complex curvelets.

The following two sections present results which are for the most part established knowledge in the
theory of hyperbolic equations. For example, we borrow some methods and results from geometric optics
[19] and most notably from Taylor [32] and Stolk and de Hoop [31]. The goal here is to keep the exposition
self-contained and at a reasonable level, and to recast prior results in the framework adopted here, which is
sometimes significantly different than that used by the original contributors.

4.2 Decoupling into polarized components

How to disentangle the vector wavefield into m independent components is perhaps best understood in the
special case of constant coefficients, Ak(x) = Ak, and with B(x) = 0. In this case, applying the 2-dimensional
Fourier transform on both sides of (4.1) gives a system of ordinary differential equations

dû

dt
(t, ξ) + ia(ξ)û(t, ξ) = 0, a(ξ) =

∑
k

Akξk.

(Note that a(ξ) is a symmetric matrix with real entries.) It follows from our assumptions that one can find
m real eigenvalues λν(ξ) and orthonormal eigenvectors rν(ξ), so that

a(ξ)rν(ξ) = λν(ξ)rν(ξ).

Put fν(t, ξ) = rν(ξ)·û(t, ξ). Then our system of equations is of course equivalent to the system of independent
scalar equations

dfν

dt
(t, ξ) + iλν(ξ)fν(ξ) = 0,

which can then be solved for explicitly;

fν(t, ξ) = e−itλν(ξ)fν(0, ξ).
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Hence, the diagonalization of a(ξ) decouples the original equation (4.1) into m polarized components; these
can be interpreted as waves going in definite directions, for example ‘up and down’ or ‘outgoing and incoming’
depending on the geometry of the problem. This is the reason why fν is also referred to as being a ‘one-way’
wavefield.

The situation is more complicated when Ak(x) is non-uniform since Fourier techniques break down. A
useful tool in the variable coefficient setting is the calculus of pseudo-differential operators. An operator T
is said to be pseudo-differential with symbol σ if it can be represented as

Tf(x) = σ(x,D)f =
1

(2π)2

∫
R2
eix·ξσ(x, ξ)f̂(ξ) dξ, (4.3)

with the convention that D = −i∇. It is of type (1, 0) and order m if σ obeys the estimate

|∂α
ξ ∂

β
xσ(x, ξ)| ≤ Cα,β · (1 + |ξ|)m−|α|

for every multi-indices α and β. Unless otherwise stated, all pseudo-differential operators in this paper are of
type (1, 0). An operator is said to be smoothing of order −∞, or simply smoothing if its symbol satisfies the
above inequality for every m < 0. Observe that this is equivalent to the property that T maps boundedly
distributions in the Sobolev space H−s to functions in Hs for every s > 0, in addition to a strong localization
property of its kernel G(x, y) which says that for each N > 0, there is a constant CN > 0 such that G obeys

|G(x, y)| ≤ CN · (1 + |x− y|)−N (4.4)

as in [30][Chapter 6].
Now set

a(x,D) =
m∑

k=1

Ak(x)Dk − iB(x),

and its principal part

a0(x,D) =
m∑

k=1

Ak(x)Dk,

so that equation (4.1) becomes ∂tu + ia(x,D)u = 0. The matrices a(x, ξ) (resp. a0(x, ξ)) are called the
symbol of the operator a(x,D) (resp. a0(x,D)). Note that a0(x, ξ) is homogeneous of degree one in ξ; a0

also goes by the name of dispersion matrix.
It follows from the symmetry of Ak and B that for every set of real parameters ξ1, . . . , ξm, the matrix

a0(x, ξ) =
∑

k Ak(x)ξk is also symmetric and thus admits real eigenvalues λ0
ν(x, ξ) and an orthonormal basis

of eigenvectors r0ν(x, ξ),
a0(x, ξ)r0ν(x, ξ) = λ0

ν(x, ξ)r0ν(x, ξ). (4.5)

The eigenvalues being real and the set of eigenvectors complete is a hyperbolicity condition and ensures that
equation (4.1) will admit wave-like solutions. We assume throughout this paper that the multiplicity of each
λ0

ν(x, ξ) is constant in x and ξ.
By analogy with the special case of constant coefficients, a first impulse may be to introduce the compo-

nents r0ν(x,D) · u, where r0ν(x,D) is the operator associated to the eigenvector r0ν(x, ξ) by the standard rule
(4.3). In particular this is how we defined hyper-curvelets from curvelets in section 1.4. Unfortunately, this
does not perfectly decouple the system into m polarized modes—it only approximately decouples. Instead,
we would achieve perfect decoupling if we could solve the eigenvalue problem

a(x,D)rν(x,D) = rν(x,D)λν(x,D). (4.6)

Here, each Λν = λν(x,D) is a scalar operator and Rν = rν(x,D) is an m-by-1 vector of operators. Equation
(4.6) must be understood in the sense of composition of operators. Now let fν be the polarized components
obeying the scalar equation

∂fν

∂t
+ iΛνfν = 0, (4.7)
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with initial condition fν(0, x) and consider the superposition

u =
∑

ν

uν , uν = Rνfν .

Then u is a solution to our initial-value problem (4.1). (We will make this rigorous later, and detail the
dependence between the initial values u0 and the fν(0, ·)’s.)

The following result shows how in some cases, (4.6) can be solved up to a smoothing remainder of order
−∞. When all the eigenvalues λ0

ν(x, ξ) are simple, the exact diagonalization is, in fact, possible. The
situation is more complicated when some of the eigenvalues are degenerate; further decoupling within the
eigenspaces is in general not possible. This complication does not compromise, however, any of our results.

The theorem is due to Taylor [32], Stolk and de Hoop [31].

Lemma 4.1. Suppose our hyperbolic system satisfies all the assumptions stated below (4.1). Then there
exists an m-by-m block-diagonal matrix of operators Λ and two m-by-m matrices of operators R and S such
that

a(x,D)R = RΛ + S,

where Λ, R and S are componentwise pseudo-differential with Λ of order one, R of order zero, and S of
order −∞. Each block of Λ corresponds to a distinct eigenvalue λ0

ν whose size equals the multiplicity of that
eigenvalue. The principal symbol of Λ is diagonal with the eigenvalues λ0

ν(x, ξ) as entries.

Sketch of proof. Let us only give the ideas of what might be an alternative easy proof of the Taylor-Stolk-de
Hoop lemma.

It is common practice to define the twisted product of two symbols σ and τ as

(σ ] τ)(x,D) = σ(x,D)τ(x,D),

so that (4.6) becomes the symbol equation

a ] rν = rν ] λν . (4.8)

It turns out that σ ] τ is the product στ up to terms that are at least one order lower in ξ. For more
information on twisted products, see [17].

The idea is now to introduce polyhomogeneous expansions

rν ∼ r0ν + r1ν + r2ν + . . . , λν ∼ λ0
ν + λ1

ν + λ2
ν + . . .

so that rn
ν is of order −n in ξ and λn

ν of order −n+ 1, and find the terms iteratively by identification of the
integer powers of |ξ| in equation (4.8). It can be seen that the contribution at the leading order is, of course,
a0r0ν = λ0

νr
0
ν . All the higher-order equations can be solved for. Issues about convergence to valid symbols

are typically treated by using suitable cutoffs, see for example [29, 33]. If an eigenvalue λ0
ν has multiplicity

p, each λj
ν stands for a p-by-p matrix and the reasoning is very similar.

The above construction indeed provides efficient decoupling of the original problem (4.1) into polarized
modes. The following lemma is a straightforward consequence of Lemma 4.1 although we have not been able
to find it in the literature. See [31] for related results.

Lemma 4.2. In the setting of Lemma 4.1, the solution operator E(t) for (4.1) may be decomposed for all
times t > 0 as

E(t) = Re−itΛL+ S̃(t),

where the matrices of operators Λ and R are defined in Lemma 4.1 and S̃(t) is (another) matrix of smoothing
operators of order −∞. In addition,

1. L is an approximate inverse of R, i.e. RL = I and LR = I (mod smoothing).
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2. L is a pseudo-differential of order zero (componentwise).

Observe that e−itΛ inherits the block structure from Λ, and is diagonal in the case where all the eigenvalues
λ0

ν are simple.

Proof. Begin by observing that R = r(x,D)—as an operator acting on L2(R2,Cm)—is invertible modulo a
smoothing additive term. This means that one can construct a parametrix L so that LR = I and RL = I
with both equations holding modulo a smoothing operator. To see why this is true, note that the matrix
r(x, ξ) is a lower-order perturbation from the unitary matrix r0(x, ξ) of eigenvectors of the principal symbol
a0(x, ξ). The inverse of r0(x, ξ) is explicitly given by `0(x, ξ) = r0(x, ξ)∗. The symbol of L can now be built
as an expansion `0+`1+. . ., where each `n(x, ξ) is homogeneous of degree −n in ξ and chosen to suppress the
O(|ξ|−j) contribution in RL− I as well as in LR− I. This construction implies that L is pseudo-differential
of order zero (componentwise). All of this is routine and detailed in [17][page 117].

In the sequel, S, S1 and S2 will denote a generic smoothing operator whose value may change from
line to line. The composition of a pseudo-differential operator and a smoothing operator is obviously still
smoothing. Set f = Lu and let A = a(x,D), so that ∂tu = −iAu. On the one hand, u = Rf − Su and

∂tu = R∂tf − S∂tu = R∂tf − SAu. (4.9)

On the other hand, Lemma 4.1 gives

Au = ARf −ASu = RΛf + S1f + S2u = RΛf + Su (4.10)

Comparing (4.9) and (4.10), and applying L gives

∂tf = −iΛf + Su. (4.11)

This can be solved by Duhamel’s formula,

f(t) = e−itΛf(0) +
∫ t

0

e−i(t−τ)ΛSu(τ) dτ. (4.12)

We now argue that the integral term is, indeed, a smoothing operator applied to the initial value u0.

• First, the evolution operator E(t) = e−itA has a kernel K(t, x, y) supported inside a neighborhood of
the diagonal y = x and for each s ≥ 0, is well-known to map Hs(R2,Cm) boundedly onto itself [19].
Therefore, SE(τ) maps H−s to Hs boundedly for every s > 0 and has a well-localized kernel in the
sense of (4.4). This implies that SE(τ) is a smoothing operator.

• Second, section 4.3 shows that e−itΛ is, for small t, a FIO of type (1, 0) and order zero, modulo a
smoothing remainder. The composition of a FIO and a smoothing operator is smoothing. For larger
t, think about e−itΛ as the product (e−i t

n Λ)n for appropriately large n.

• And third, the integral extends over a finite interval [0, t] and may be thought as an average of smoothing
operator—hence smoothing.

In short, f(t) = e−itΛf(0) + Su0. Applying R on both sides of (4.11) finally gives

u = Re−itΛLu0 + S1u0 + S2u = (Re−itΛL+ S)u0

which is what we set to establish.
It remains to see that the evolution operator e−itΛ for the polarized components has the same block-

diagonal structure as Λ itself. This is gleaned from equation (4.11): evolution equations for two components
fν1 , fν2 (corresponding to distinct eigenvalues) are completely decoupled.
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4.3 The Fourier integral operator parametrix

Lemma 4.2 explained how to turn the evolution operator E(t) into the block-diagonal representation e−itΛ.
In this section, we describe how each of these blocks can be approximated by a Fourier integral operator. The
ideas here are standard and our exposition is essentially taken from [15] and [29]. The original construction
is due to Lax [19].

Let us first assume that all eigenvalues of the principal symbol a0(x, ξ) are simple. This is the situation
where the matrix of operators Λ (Lemma 4.1) is diagonal with elements Λν . Put Eν(t) = e−itΛν , the
(scalar) evolution operator relative to the νth polarized mode. We seek a parametrix Fν(t) such that
Sν(t) = Eν(t)− Fν(t) is smoothing of order −∞.

Formally,

f(t, x) =
∫
Eν(t)(eix·ξ) f̂0(ξ) dξ.

Our objective is to build a high-frequency asymptotic expansion for Eν(t)(eix·ξ) of the form

eiΦν(t,x,ξ)σν(t, x, ξ), (4.13)

where σν ∼ σ0
ν + σ1

ν + . . . with σn
ν homogeneous of degree −n in ξ, and Φ homogeneous of degree one in ξ.

As is classical in asymptotic analysis, we proceed by applying Mν = ∂t + iΛν to the expansion (4.13)
and successively equate all the coefficients of the negative powers of |ξ| to zero, hence mimicking the relation
MνEν(t)(eix·ξ) = 0 which holds by definition. For obvious reasons, we also impose that (4.13) evaluated
at t = 0 be eix·ξ. Note that, in accordance to Lemma 4.1, Λν is taken as a polyhomogeneous expansion∑

j≥0 λ
j
ν(x,D), where each symbol λj

ν(x, ξ) is homogeneous of degree −j + 1 in ξ.
After elementary manipulations, one finds that the phases must satisfy the standard Hamilton-Jacobi

equations
∂Φν

∂t
+ λ0

ν(x,∇xΦν) = 0, (4.14)

with Φν(0, x, ξ) = x·ξ. The amplitudes σn
ν are successively determined as the solutions of transport equations

along each Hamiltonian vector field,

∂σn
ν

∂t
+∇ξλ

0
ν(x,∇xΦν) · ∇xσ

n
ν = Pn(σ0

ν , . . . , σ
n
ν ), (4.15)

where Pn is a known differential operator applied to σ0
ν , . . . , σ

n
ν .

In the case where some eigenvalue λ0
ν has multiplicity p > 1, the construction of a FIO parametrix goes

the same way, except that Λν denotes the p-by-p block corresponding to λ0
ν in the matrix Λ of Lemma 4.1.

Also each σn
ν is now a p-by-p matrix of amplitudes.

It is important to notice that Φν may be defined only for small times, because it would become multi-
valued when rays originating from the same point x0 cross again later. This typically happens at cusp points,
when caustics start developing. We refer the interested reader to [15, 34].

We skipped a lot of justifications in the above exposition, in particular on convergence issues, but these
technicalities are standard and detailed in some very good monographs. The following result summarizes all
that we shall need.

Lemma 4.3. Define t∗ as half the infimum time for which a solution to (4.14) ceases to exist, uniformly
in ν and ξ. In the setting of Lemma 4.1, denote by Λν a block of Λ and Eν(t) = e−itΛν . Then for every
0 < t ≤ t∗, there exists a parametrix Fν(t) for the evolution problem ∂tf + iΛνf = 0 which takes the form of
a Fourier integral operator,

Fν(t)f0(x) =
∫
eiΦ(t,x,ξ)σν(t, x, ξ)f̂0(ξ) dξ,

For each t ≤ t∗, the phase function Φν is positive-homogeneous of degree one in ξ and smooth in x and ξ; the
amplitude σν is a symbol of type (1, 0) and order zero. The remainder Sν(t) = Eν(t)− Fν(t) is a smoothing
operator of order −∞.

Proof. The proof is for the most part presented in [29][Pages 120 and below]. See also [14, 15, 33].
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4.4 Sparsity of smoothing terms

The specialist will immediately recognize that a smoothing operator of order −∞ is very sparse in a curvelet
frame. This is the content of the following lemma.

Lemma 4.4. The curvelet entries of a smoothing operator S obey the following estimate: for each N > 0,
there is a constant CN such that

|〈ϕµ, Sϕµ′〉| ≤ CN · 2−|j+j′|N (1 + |xµ − xµ′ |)−N . (4.16)

Note that (4.16) is a stronger estimate than that of Theorem 1.1. Indeed, our lemma implies that

|〈ϕµ, Sϕµ′〉| ≤ CN · ω(µ, hν(t, µ′))−N

which is valid for each N > 0 and regardless of the value of ν.

Proof. We know that S maps H−s to Hs for arbitrary large s, so does its adjoint S∗. As a result,

|〈ϕµ, Sϕµ′〉| ≤ |〈S∗ϕµ, ϕµ′〉|1/2|〈ϕµ, Sϕµ′〉|1/2

≤ ‖S∗ϕµ‖1/2
Hs ‖ϕµ′‖1/2

H−s‖ϕµ‖1/2
H−s‖Sϕµ′‖1/2

Hs

≤ C · ‖ϕµ′‖H−s‖ϕµ‖H−s ≤ C · 2−(j+j′)s.

Next, recall that curvelets have an essential spatial support of size at most O(1) × O(1). (Coarse scale
curvelets have support size about O(1)×O(1) and the size decreases at increasingly finer scales.) The action
of S is local on this range of distances, so that

|〈ϕµ, Sϕµ′〉| ≤ CN · (1 + |xµ − xµ′ |)−N .

for arbitrary large N > 0. These two bounds can be combined to conclude that the matrix elements of S
are negligible in the sense defined above.

4.5 Proof of Theorem 1.1

Let us first show how the first assertion on the near-exponential decay of the curvelet matrix elements follows
immediately from the second one, equation (1.16). Let a be either a row or a column of the curvelet matrix
and let |a|(n) be the n-largest entry of the sequence |a|. We have

n1/p · |a|(n) ≤ ‖a‖1/p
`p

and, therefore, it is sufficient to prove that the matrix E has rows and columns bounded in `p for every
p > 0. Consider the columns. We need to establish

sup
µ′,ν′

∑
µ,ν

|E(t;µ, ν;µ′, ν′)|p ≤ Ct,p, (4.17)

for some constant Ct,p > 0 growing at most like Cpe
Kpt for some Cp,Kp > 0.

The sum over ν and the sup over ν′ do not come in the way since these subscripts take on a finite number
of values. The fine decoupling between the m one-way components, crucial for equation (1.16), does not play
any role here.

Let us now show that there exists N so that∑
µ

ω(µ, µ′)−Np ≤ CN,p,
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uniformly in µ′. We can use the bound (A.2) with Np in place of N for the sum over k and `. This gives∑
µ

ω(µ, µ′)−Np ≤ CN,p ·
∑
j≥0

2−|j−j′|Np · 22|j−j′|,

which is bounded by a constant depending on N and p provided again that Np ≥ 2.
Hence we proved the property for the columns. The same holds for the rows because the same conclusion

is true for the adjoint E(t)∗; indeed, the adjoint solves the backward initial-value problem for the adjoint
equation ut = A∗u, and A∗ satisfies the same hyperbolicity conditions as A. We can therefore interchange
the role of the two curvelets and obtain

sup
µ′,ν′

∑
µ,ν

|E(t;µ′, ν′;µ, ν)|p ≤ Ct,p.

Note that the classical interpolation inequality shows that E(t) is a bounded operator from `p to `p for every
0 < p ≤ ∞.

We now turn to (1.16). Let us assume first that all eigenvalues λ0
ν of the principal symbol a0 are simple.

According to Lemmas 4.2 and 4.3, each matrix element E(t; ν; ν′) = eν ·E(t)eν′ of E(t) can for fixed (possibly
large) time t > 0 be written as

E(t; ν; ν′) =
m∑

ν′′=1

Rν,ν′′(e−i t
n Λν′′ )nLν′′,ν′ + Sν,ν′(t). (4.18)

We have taken n large enough—proportional to t—so that e−i t
n Λν is a Fourier integral operator (mod

smoothing) for every ν. Each Rν,ν′ and Lν,ν′ is pseudo-differential of order zero and Sν,ν′(t) is smoothing.
Thanks to Lemma 4.4, we only need to prove the claim for the first term of (4.18) which follows from

Theorem 5.1 in section 5 about the sparsity of FIO’s in a curvelet tight-frame.
As is well-known, the ray dynamics is equivalently expressed in terms of Hamiltonian flows{

ẋ(t) = ∇ξλ
0(x(t), ξ(t)), x(0) = x0,

ξ̇(t) = −∇xλ
0(x(t), ξ(t)), ξ(0) = ξ0,

(4.19)

or in terms of canonical transformations generated by the phase functions Φν ,{
x0 = ∇ξΦ(t, x(t), ξ0),
ξ(t) = ∇xΦ(t, x(t), ξ0),

(4.20)

provided Φ(t, x, ξ) satisfies the Hamilton-Jacobi equation ∂Φ
∂t +λ0(x,∇xΦ) = 0 with initial condition Φ(0, x, ξ0) =

x ·ξ0. We obviously need this property to ensure that the geometry of FIO’s is the same as that of hyperbolic
equations.

Pseudo-differential operators are a special instance of Fourier integral operators so the theorem equally
applies to them. For E(t;µ, ν;µ′, ν′) = 〈ϕµ, E(t; ν; ν′)ϕ′µ〉 we get

|E(t;µ, ν;µ′, ν′)| ≤ CN

m∑
ν′′=1

∑
µ0

· · ·
∑
µn

ω(µ, µ0)−Nω(µ0, µ1ν′′(
t

n
))−N · · ·

ω(µn−1, µnν′′(
t

n
))−Nω(µn, µ

′)−N ,

for all N > 0. Inequality (4.2) then follows from repeated applications of properties 3 and 4 of the distance
ω, see proposition 2.2. The power growth in t of the overall multiplicative constant comes from the number
of intermediate sums over µ0, . . . , µn. There are n + 1 ∼ t such sums and they each introduce the same
multiplicative constant CN .
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The reasoning is the same when at least some eigenvalues λ0
ν are degenerate. The subscript ν′′ now

denotes the flows i.e., the eigenvalues λ0
ν′′ not counting their multiplicity. Each Rν,ν′′ is a row vector,

e−i t
n Λν′′ a matrix and Lν′′,ν′ a column vector. The FIO parametrix for e−i t

n Λν′′ was constructed in such a
way that only one flow hν′′ appears in the majoration of its curvelet elements (componentwise). There is no
intermediate sum over ν0, . . . , νn and this is the whole point of decoupling the polarized components before
constructing the FIO parametrix.

4.6 Relation to hyper-curvelets

In section 1.4 we introduced hyper-curvelets as ‘polarized’ curvelets which would not split into m molecules
along the m different flows. In light of section 4.2, it is interesting to reformulate our main result (4.2) in
terms of hyper-curvelets. We recall that

ϕ(0)
µν (x) = r0ν(x,D)ϕµ(x) =

1
(2π)2

∫
eix·ξr0ν(x, ξ)ϕ̂µ(ξ) dξ.

Corollary 4.5. Define E(0)(t;µ, ν;µ′, ν′) = 〈ϕ(0)
µν , E(t)ϕ(0)

µ′ν′〉. Then under the same assumptions as those
of Theorem 1.1 we have for all N > 0

|E(0)(t;µ, ν;µ′, ν′)| ≤ CtN · [ω(µ, µ′ν′(t))
−N + 2−j′

∑
ν′′ 6=ν′

ω(µ, µ′ν′′(t))
−N ]. (4.21)

The main contribution to the right-hand side is due to the ν′th flow. All other flows are weighted by the
small factor 2−j′ (which is about equal to |ξ|−1 on the support of ϕ̂µ′). In other words, there might be some
’cross talk’ between the various components corresponding to the different flows but it is at most smoothing
of order −1, hence small at small scales.

Proof. Equation (4.21) follows from Theorem 1.1 and the fact that the adjoint of the matrix operator R0

whose columns are the R0
ν = r0ν(x,D) is an approximate left inverse for R0—up to an error smoothing of

order −1. Indeed, by the standard rules for composition and computation of the adjoint of pseudo-differential
operators,

(R0
ν)∗R0

ν′ = ((r0ν)∗ ] r0ν′)(x,D)

= ((r0ν)∗r0ν′)(x,D) + order−1
= δνν′I + order−1.

We have used the fact that the dispersion matrix a0(x, ξ) is assumed to be symmetric, hence admits an or-
thobasis of eigenvectors r0ν(x, ξ). We then conclude from Theorem 5.1 applied to pseudo-differential operators
of order −1.

Alternatively, we could have defined hyper-curvelets as

ϕ(∞)
µν = rν(x,D)ϕµ(x) =

1
(2π)2

∫
eix·ξrν(x, ξ)ϕ̂µ(ξ) dξ.

This would have given the same result.2 The reason why we did not use hyper-curvelets in the preceding
sections is that they do not necessarily constitute a suitable practical basis to decompose wavefields onto.
We do not even know if they always constitute a frame. Digital implementation would also seem less obvious.

2We can only conjecture that the decoupling should be better if we use the improved ϕ
(∞)
µν .
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5 Representation of FIOs

The purpose of this section is to show that Fourier integral operators admit a sparse and well-organized
structure in a curvelet frame. The main result, Theorem 5.1, is a key step in completing the discussion of
the previous section. (Observe that by construction, the FIO’s encountered in the previous section satisfy
all the assumptions stated in section 1.6 right below (1.18).) As in the previous section, we will restrict the
discussion to x ∈ R2 which is no loss of generality, see section 6.

5.1 Main results

In the introduction section, we detailed a notion of Hamiltonian correspondence for hyperbolic equations.
This correspondence also exists for FIO’s and is ‘encoded’ in the phase function Φ of the FIO. It is called
the canonical transformation associated to Φ, and is defined as the mapping (x, ξ) → (y, η) of phase-space

x = ∇ξΦ(y, ξ), η = ∇xΦ(y, ξ). (5.1)

As suggested in section 4.5, this formulation is equivalent to that involving trajectories along the bicharacter-
istic flow as in equation (1.6), provided the phase function solves an appropriate Hamilton-Jacobi equation.

This canonical transformation induces a mapping of curvelet subscripts, denoted by µ′ = h(µ). It is
defined via the closest point (xµ′ , ξµ′), on the curvelet lattice, to the image of (xµ, ξµ) by the canonical
transformation. We can already remark that mistaking a point (xµ′ , ξµ′) for one of its neighbors will not
compromise the following result, only increase the value of the constant CN in front of the estimate.

The main result for this section reads as follows.

Theorem 5.1. Let T be a Fourier integral operator of order m acting on functions of R2, with the assump-
tions stated above, and T (µ;µ′) denote its matrix elements in the complex curvelet tight frame. Then with h
the curvelet index mapping and ω the distance defined in (2.12), the elements T (µ;µ′) obey for each N > 0

|T (µ;µ′)| ≤ CN · 2mj′ω(µ, h(µ′))−N ,

for some CN > 0. Moreover, for every 0 < p ≤ ∞, (T (µ, µ′)) is bounded from `p to `p.

The interpretation of Theorem 5.1 is in strong analogy with that of Theorem 1.1. Namely, a FIO has
the property of transporting and warping a curvelet into another curvelet-like molecule. (Again, the choice
of using complex-valued curvelets is not essential, as a real curvelet would be mapped onto two molecules.)

The proof of Theorem 5.1 relies on the factorization of T on the space-frequency support of ϕµ as a nice
pseudo-local operator T1,µ followed by a smooth change of variables, or warping T2,µ. This decomposition
goes as follows.

Let ϕµ be a fixed curvelet centered around the lattice point (xµ, ξµ) in phase-space. The phase of our
FIO can be decomposed as

Φ(x, ξ) = Φξ(x, ξµ) · ξ + δ(x, ξ), φµ(x) = Φξ(x, ξµ). (5.2)

In effect, the above decomposition ‘linearizes’ the frequency variable and is classical, see [25, 30]. With these
notations, we may rewrite the action of T on a curvelet ϕµ as

(Tϕµ)(x) =
∫
eiφµ(x)·ξeiδ(x,ξ)σ(x, ξ)ϕ̂µ(ξ) dξ. (5.3)

Now for a fixed value of the parameter µ, we introduce the decomposition

T = T2,µT1,µ,

where
(T1,µf)(x) =

∫
eix·ξbµ(x, ξ)f̂(ξ) dξ, (T2,µf)(x) = f(φµ(x)), (5.4)
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with bµ(x, ξ) = eiδ(φ−1
µ (x),ξ)σ(φ−1

µ (x), ξ)). This decomposition allows the separate study of the nonlinearities
in frequency ξ and space x in the phase function Φ. The point is that both T1,µ and T2,µ are sparse in a
curvelet tight frame—only for very different reasons.

Theorem 5.2. Let (ϕµ)µ be a tight frame of curvelets compactly supported in frequency. For each µ, T1,µ

maps ϕµ into a curvelet molecule mµ with arbitrary regularity R, uniformly over µ in the sense that the
constants in estimates (2.5) and (2.6) do not depend on µ.

As we shall see, the proof of Theorem 5.2, presented in section 5.2, relies on the property of compact
support in frequency of the ϕµ. In contrast the corresponding result for the operators T2,µ which we present
next, is extraordinarily simplified if one uses curvelets compactly supported in space. Although well localized
in space, the tight frame introduced in section 2 does not meet this requirement. In order to circumvent this
technical difficulty, we introduce compactly supported curvelet atoms in section 5.3. They are built on the
model of atomic decompositions, standard in approximation theory [18].

Theorem 5.3. Let (ρµ)µ be a family of complex-valued curvelet atoms, compactly supported in space, with
regularity R. Denote by h the canonical index correspondence associated to Φ, as defined above. For each µ,
T2,µ maps ρµ into a molecule mh(µ) of the same regularity R, uniformly over µ.

The latter theorem says that the ‘warped’ atom ρµ ◦ φµ is still an atom, only its scale, orientation, and
location may have been changed. That a smooth warping preserves the sparsity of curvelet expansions is a
result of independent interest.

The remaining 3 sections are devoted to the proofs of Theorems 5.2, 5.3 and 5.1. The dependence of φµ

upon µ is not essential in proving Theorems 5.2, 5.3 as the only property of interest is that the derivatives of
φµ are bounded from above and below uniformly over µ (which follows from our assumptions about Φ). This
is the reason why in the next sections we will drop the explicit dependence on µ and work with a generic
warping φ.

5.2 Proof of Theorem 5.2

We will assume without loss of generality that our curvelet ϕµ is centered near zero (k = 0) and is nearly
vertical (θµ = 0).

Set mµ = T1ϕµ. We first show that mµ obeys the smoothness and spatial localization estimate of a
molecule (2.5). With the same notations as before, recall that mµ is given by

mµ(x) =
∫
eix·ξbµ(x, ξ)ϕ̂µ(ξ) dξ, bµ(x, ξ) = eiδ(φ−1(x),ξ)σ(φ−1(x), ξ). (5.5)

To study the spatial decay of mµ(x), we introduce the differential operator

Lξ = I − 22j ∂
2

∂ξ21
− 2j ∂

2

∂ξ22
,

and evaluate the integral (5.5) using an integration by parts argument. First, observe that

LN
ξ e

ix·ξ =
(
1 + |2jx1|2 + |2j/2x2|2

)N

eix·ξ.

Second, we claim that for every integer N ≥ 0,

|LN
ξ [bµ(x, ξ)ϕ̂µ(ξ)]| ≤ C · 2−3j/4. (5.6)

(The factor 2−3j/4 comes from the L2 normalization of ϕ̂µ.) This inequality is proved in appendix A.2.
Hence,

mµ(x) =
(
1 + |2jx1|2 + |2j/2x2|2

)−N
∫
LN

ξ [bµ(x, ξ)ϕ̂µ(ξ)] eix·ξ.
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Since |LN
ξ [bµ(x, ξ)ϕ̂µ(ξ)]| ≤ C · 2−3j/4 and is supported on a dyadic rectangle Rµ, of length about 2j and

width 2j/2, we then established that

|mµ(x)| ≤ C · 23j/4(
1 + |2jx1|2 + |2j/2x2|2

)N .

The derivatives of mµ are essentially treated in the same way. Begin with

∂α
x (eix·ξbµ(x, ξ)) =

∑
β+ϕ≤α

∂β(eix·ξ) ∂ϕ(bµ(x, ξ))

=
∑

β+ϕ≤α

∂ϕ(bµ(x, ξ)) ξβeix·ξ

Therefore, the partial derivatives of mµ are given by

(∂α
xmµ)(x) =

∑
β+ϕ≤α

Iβ,ϕ(x), (5.7)

where
Iβ,ϕ(x) =

∫
eix·ξ∂ϕ

x (bµ(x, ξ))ξβϕ̂µ(ξ) dξ. (5.8)

First, observe that on the support of ϕ̂µ, |ξ|β obeys |ξ|β ≤ C · 2jβ1 · 2jβ2/2. Second, the term ∂ϕ
x b(x, ξ) is

of the same nature as bµ(x, ξ) in the sense that it obeys all the same estimates as before. In particular, we
claim that for every integer N ≥ 0,

|LN
ξ [∂ϕ

x bµ(x, ξ)ξβϕ̂µ(ξ)]| ≤ C · 2−3j/4 · 2jβ1 · 2jβ2/2. (5.9)

Hence, the same argument as before gives

|Iβ,ϕ(x)| ≤ C · 23j/4 · 2jβ1 · 2jβ2/2(
1 + |2jx1|2 + |2j/2x2|2

)N .

Now since β ≤ α, we may conclude that

|(∂α
xmµ)(x)| ≤ C · 23j/4 · 2jα1 · 2jα2/2(

1 + |2jx1|2 + |2j/2x2|2
)N .

This establishes the smoothness and localization property.
The above analysis shows that mµ is a “ridge” of effective length 2−j/2 and width 2−j ; to prove that

mµ is a molecule, we now need to evidence its oscillatory behavior across the ridge. In other words, we are
interested in the size of the Fourier transform at low frequencies (2.6)–(2.9).

Formally, the Fourier transform of mµ is given by

m̂µ(ξ) =
∫ ∫

eix·(η−ξ)bµ(x, η)ϕ̂µ(η) dxdη. (5.10)

We should point out that because the amplitude b is not of compact support in x, the sense in which
(5.10) holds is not obvious. This is a well-known phenomenon in Fourier analysis and a classical technique
to circumvent such difficulties would be to multiply mµ (or equivalently bµ) by a smooth and compactly
supported cut-off function χ(εx) and let ε tend to zero. We omit those details as they are standard.

Set D1 = −i ∂
∂x1

. To develop bounds on |m̂µ(ξ)|, observe that

DN
1 e

ix·η = (η1)N .

30



An integration by parts then gives

m̂µ(ξ) =
∫ ∫

eix·ηDN
1

(
e−ix·ξ bµ(x, ξ)

)
η−N
1 ϕ̂µ(η) dxdη.

Hence,

m̂µ(ξ) =
N∑

m=0

cm ξm
1 F̂m(ξ),

where
Fm(x) =

∫
eix·η(∂n−m

x1
b(x, ξ)) η−n

1 ϕ̂µ(η) dη.

Note that Fm is exactly of the same form as (5.8)—but with η−n
1 instead of ηβ—and therefore, the exact

same argument as before gives

|Fm(x)| ≤ C · 23j/4 · 2−jn(
1 + |2jx1|2 + |2j/2x2|2

)N .

We then established
‖F̂m‖L∞ ≤ ‖F‖L1 ≤ Cm · 2−3j/4 · 2−jn,

which gives
|mµ(ξ)| ≤ C · 2−3j/4 · 2−jn · (1 + |ξ|n),

as required. This finishes the proof of Theorem 5.2.
The careful reader will object that we did not study the case of coarse scale curvelets; it is obvious that

coarse scale elements are mapped into coarse scale molecules and, here, the argument would not require the
deployment of the sophisticated tools we exposed above. We omit the proof.

5.3 Atomic decompositions

As we will see later, to prove our main result and especially Theorem 5.3, it would be most helpful to work
with tight frames of curvelet compactly supported in space. Unfortunately, it is unclear at this point how to
construct such tight frames with nice frequency localization properties. However, there exist useful atomic
decompositions with compactly supported curvelet-like atoms. We now explore such decompositions.

In this section, the notation fa,θ refers to the function obtained from f after applying a parabolic scaling
and a rotation

fa,θ(x) = a−3/4f (DaRθx) , Da =
(

1/a 0
0 1/

√
a

)
,

and where Rθ is the rotation matrix which maps the vector (1, 0) into (cos θ,− sin θ). Note that this is an
isometry as

‖fa,θ‖L2 = ‖f‖L2 .

In [27], Smith proved the following result: let ψ̃ be a Schwartz function obeying ˆ̃
ψ(1, 0) 6= 0; then one

can find another Schwartz function ψ, and a function q(ξ) such that the following formula holds

q(ξ)
∫

a≤1

ˆ̃
ψa,θ(ξ)ψ̂a,θ(ξ) adadθ = r(ξ); (5.11)

here r is a smooth cut-off function obeying

r(ξ) =
{

1 |ξ| ≥ 2
0 |ξ| ≤ 1 ,
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and q is a standard Fourier multiplier of order zero; that is, for each multiindex α, there exists a constant
Cα such that

|∂α
ξ q(ξ)| ≤ Cα(1 + |ξ|)−|α|.

This formula is useful because it allows us to express any object whose Fourier transform vanishes on
{|ξ| ≤ 2} as a continuous superposition of curvelet-like elements. We now make some specific choices for ϕ.
In the remainder of this section, we will take ψ̃(x) = ψ(−x) and the function ψ of the form

ψ(x1, x2) = ψD(x1)ϕ(x2), (5.12)

where both ϕ and ψD are compactly supported and obey

Suppϕ ⊂ [0, 1], SuppψD ⊂ [0, 1].

We will assume that ϕ and ψD are C∞ and that the function ψD has vanishing moments up to order D, i.e.∫
ψD(x1)xk

1 dx1 = 0, k = 0, 1, . . . , D. (5.13)

For each a ≤ 1, each b ∈ R2 and each θ ∈ [0, 2π), introduce

ψa,θ,b(x) := ψa,θ(x− b) = a−3/4ψ (DaRθ(x− b)) ; (5.14)

and given an object f , define coefficients by

CCT (f)(a, b, θ) =
∫
ψa,θ,b(x)f(x)dx. (5.15)

Now, suppose for instance that f̂ vanishes over |ξ| ≤ 2, then (5.11) gives the exact reconstruction formula

f(x) =
∫

a≥1

CCT (q(D)f))(a, b, θ)ψa,θ,b(x)µ(dadθdb), (5.16)

with µ(dadθdb) = adadθdb. In the remainder of this section, we will use the shorter notation dµ for µ(dadθdb).
As is now well-established, the reproducing formula may be turned into a so-called ‘atomic decomposi-

tion’. Not surprisingly, our atomic decomposition will just mimic the discretization of the curvelet frame as
introduced in section 2. With the notations of that section, we introduce the cells Qµ defined as follows: for
j ≥ 0, ` = 0, 1, . . . 2bj/2c − 1 and k = (k1, k2) ∈ Z2, the cell Qµ is the collections of triples (a, θ, b) for which

2−(j+1) ≤ a < 2−j , |θ − θµ| ≤
π

2
2−bj/2c

and
D2−jRθµ

b ∈ [k1, k1 + 1)× [k2, k2 + 1).

Note that
∫

Qµ
dµ = 3π/2 for j even, and 3π for j odd. We may then break the integral (5.16) into a sum of

terms arising from different cells, namely,

f(x) =
∑

µ

αµρµ(x) (5.17)

where

αµ = ‖CCT (q(D)f)‖L2(Qµ), (5.18)

ρµ(x) =
1
αµ

∫
Qµ

CCT (q(D)f))(a, b, θ)ψa,θ,b(x) dµ.

Of course, the decomposition (5.17) greatly resembles the tight frame expansion, compare (1.5). In
particular, the atoms ρµ are curvelet-like in the sense that they share all the properties of the tight frame
(ϕµ)µ – only they are compactly supported in space. In the remainder of the paper, we will call these
elements atoms. Below are some crucial properties of these atoms.
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Lemma 5.4. Rewrite the atoms ρµ as ρµ(x) = 23j/4a(µ)
(
D2−jRθµx− k

)
. In other words, ρµ is obtained

from a(µ) after parabolic scaling, rotation, and translation. For all µ, the a(µ)’s verify the following properties.

• Compact support;
Supp a(µ) ⊂ cQ. (5.19)

• Nearly vanishing moment along the horizontal axis; let m = D/2. Then for each k = 0, 1, . . . ,m, there
is a constant Cm such that ∫

a(µ)(x1, x2)xk
1 dx1 ≤ Cm · 2−j(m+1). (5.20)

• Regularity; for every multiindex α
|∂α

x a
(µ)(x)| ≤ Cα. (5.21)

In (5.20) and (5.21), the constants may be chosen independently of µ and f .

Proof. See appendix A.2

Needless to say that curvelet atoms are molecules with spatial compact support, compare lemma 5.4
with the definition of a molecule. Finally, observe (and this is important) that it is of course possible to
decompose a molecule into a series of atoms

mµ =
∑
µ′

αµµ′ρµ′ .

The coefficients would then obey the same estimate as in lemma 2.3

|αµµ′ | ≤ CN · ω(µ, µ′)−N , (5.22)

and in particular, for each p > 0,
sup

µ

∑
µ′

|αµµ′ |p < Cp.

This is briefly justified in appendix A.2.

5.4 Proof of Theorem 5.3

As mentioned earlier, curvelet atoms depend in a nonessential way upon the object f we wish to analyze
and we shall drop this dependence in our notations. To prove Theorem 5.3, recall that we need to show that
for each curvelet atom ρµ with regularity R, the ’warped’ atom ρµ ◦φ is also a curvelet atom, with the same
regularity.

As in Section 5.3, we suppose our curvelet atom is of the form

ρµ(x) = 23j/4a(µ)(D2−jRθµ
(x− xµ)),

where a(µ) obeys the conditions of Lemma 5.4. (Here, the location xµ may be formally defined by xµ =
(D2−jRθµ)−1kδ.) Define yµ and Aµ by

yµ = φ−1(xµ), and Aµ = (∇φ)(yµ) (5.23)

so that
φ(y) = xµ +Aµ(y − yµ) + g(y − yµ).

With these notations, it is clear that the warped atom ρµ ◦ φ will be centered near the point yµ; that is,

ρµ(φ(y)) = 23j/4a(µ)
(
D2−jRθµ

(Aµ(y − yµ) + g(y − yµ))
)
.
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To simplify matters, we first assume that Aµ is the identity and show that ρµ ◦ φ is a curvelet atom with
the same scale and orientation as ρµ. Later, we will see that in general, ρµ ◦ φ is an atom whose orientation
depends upon Aµ, and whose scale may be taken to be the same as that of ρµ. Assume without loss of
generality that θµ = 0 and yµ = 0 (statements for arbitrary orientations and locations are obtained in an
obvious fashion) so that

ρµ(φ(y)) = 23j/4a(µ) (D2−j (y + g(y))) = 23j/4b(µ)(D2−jy), (5.24)

with
b(µ)(y) = a(µ) (y +D2−jg(D2jy)) .

The atom a(µ) is supported over a square of sidelength about 1; likewise, b(µ) is also compactly supported in
a box of roughly the same size—uniformly over µ. We then need to derive smoothness estimates and show
that b(µ) obeys

|∂αb(µ)(y)| ≤ Cα, |α| ≤ R. (5.25)

Over the support of ρµ ◦ φ, g = (g1, g2) deviates little from zero and for each k = 1, 2, gk obeys

|gk(y)| ≤ C · 2−j , |∂αgk(y)| ≤ C · 2−j/2, |α| = 1.

Similarly, for each α, |α| > 1,
|∂αgk(y)| ≤ Cα. (5.26)

These estimates hold uniformly over µ. It follows that for |y1|, |y2| ≤ C and each α, the perturbation g obeys

2j · |∂αg1(2−jy1, 2−j/2y2)| ≤ Cα, 2j/2 · |∂αg2(2−jy1, 2−j/2y2)| ≤ Cα. (5.27)

The bound (5.25) is then a simple consequence of (5.27) together with the fact that all the derivatives of
a(µ) up to order R are bounded, uniformly over µ.

We now show that ρµ ◦ φ exhibits the appropriate behavior at low frequencies.

ρ̂µ ◦ φ(ξ) =
∫
e−ix·ξρµ(φ(x)) dx

=
∫
e−iφ−1(x)·ξρµ(x)

dx

|det∇φ|(φ−1(x))
.

We will use the nearly vanishing moment property of ρµ. Set

Sξ(x) = e−iφ−1(x)·ξ/|det∇φ|(φ−1(x));

note that over the support of ρµ and for each N ≤ R, we have available the following upper bound on the
partial derivative of Sξ

|∂N
1 Sξ(x)| ≤ CN · (1 + |ξ|)N .

Classical arguments give

ρ̂µ ◦ φ(ξ) =
n−1∑
k=0

∫
∂k
1Sξ(0, x2)

k!
dx2

∫
ρµ(x1, x2)xk

1 dx1dx2 + E, (5.28)

where E is a remainder term obeying

|E| ≤ Cn · 2−3j/4 · 2−jn · sup |∂n
1 Sξ(x)| ≤ Cn · 2−3j/4 · 2−jn(1 + |ξ|n). (5.29)

The near-vanishing moment property gives that each term in the right-hand side of (5.28) obeys the estimate
in (5.29). This proves that the Fourier transform of ρµ ◦ φ obeys

|ρ̂µ ◦ φ(ξ)| ≤ Cn · 2−jn(1 + |ξ|n)
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as required.
We now discuss the case where the matrix Aµ is not the identity. In this case, (5.24) becomes

ρµ(φ(y)) = mµ(Aµy),

with
mµ(y) = 23j/4a(µ) (D2j (y + g̃(y))) , and g̃(y) = g(A−1

µ y).

Our assumptions about FIOs guarantee that |A−1
µ | is uniformly bounded and, therefore, it follows from the

previous analysis that mµ is a curvelet atom. As a consequence ρµ ◦ φ is a curvelet atom with the same
regularity R since it is clear that bounded linear transformations of the plane map curvelet atoms into
curvelet atoms.

5.5 Proof of Theorem 5.1

Let ϕµ0 be a fixed curvelet and decompose T as T2,µ0 ◦ T1,µ0 . First, Theorem 5.2 proved that T1,µ0ϕµ0 is a
curvelet molecule mµ0 which we will express as a superposition of curvelet atoms ρµ1

T1,µ0ϕµ0 = mµ0 =
∑
µ1

β0(µ1, µ0)ρµ1 .

Second, for each µ1, Theorem 5.3 shows that T2,µ1ρµ1 is a molecule mh(µ1) at the location h(µ1). We are
not exactly in that setting since in T2,µ0ρµ1 , the subscripts do not in general match. This does not pose any
difficulty since Theorem 5.3 can be understood as a statement concerning general warpings φ. We can define
the map hµ0 as induced by the transformation (x, ξ) → (y, η) given by

x = ∇xΦ(y, ξµ0), η = ∇ξ(y, ξµ0)

(compare this with equation (5.1)). Then, according to Theorem 5.3, T2,µ0ρµ1 is a molecule mhµ0 (µ1) at
the location hµ0(µ1). So

〈ϕµ2 , T2,µ0ρµ1〉 = β1(µ2, hµ0(µ1)).

Hence,
〈ϕµ2 , Tϕµ0〉 =

∑
µ1

β1(µ2, hµ0(µ1))β0(µ1, µ0).

Of course, both β0 and β1 obey very special decay properties.

• By Theorem 5.2 and Lemma 2.3, |β0(µ1, µ0)| ≤ Cn · ω(µ1, µ0)−N for arbitrarily large N > 0, provided
that the selected atoms are regular enough.

• By Theorem 5.3 and Lemma 2.3, |β1(µ2, hµ0(µ1))| ≤ CN ·ω(µ2, hµ0(µ1))−N for arbitrarily large N > 0,
provided that the selected atoms are regular enough.

Theorem 5.1 now follows from the observation that∑
µ1

ω(µ2, hµ0(µ1))−N · ω(µ1, µ0)−N ≤ Cn · ω(µ2, hµ0(µ0))−(N−1), (5.30)

This is an immediate consequence of properties 3 and 4 of the pseudo-distance ω, see proposition 2.2.
Cases involving coarse scale elements are treated similarly and we omit the proof. The boundedness from

`p to `p for every p > 0 follows from the same argument as in the proof of Theorem 1.1.

35



6 Discussion

All along we specialized our discussion to the special case where the dimension of the spatial variable is n = 2.
It is clear that nothing in our arguments depends upon this specific assumption. Indeed, we could just as well
construct tight-frames of curvelets in arbitrary dimensions by smoothly partitioning the frequency plane into
dyadic coronae, which would then be angularly localized near regions of sidelength length 2j in the radial
direction and 2j/2 in all the other directions; in order to this, we would use smooth partitions of the unit
sphere of Rn into spherical caps of radius about 2−j/2. All of our analysis would apply as is, and would
prove versions of Theorem 1.1 in arbitrary dimensions.

Our main result assumes that the coefficients of the equation (1.1) be smooth. In many applications
of interest, however, the coefficients may be smooth away from singular smooth surfaces. In geophysics
for example, we typically have different layers with very different physical properties. A very important
question would be to know how our analysis would adapt to this situation. In fact, it seems natural to
believe that sparsity would continue to hold in this more general setting. Intuitively, the wave group would
still be approximated by rigid motion along the Hamiltonian flow. Only, one would need to account for
possible reflections/refractions. A curvelet hitting a singularity at a small angle of incidence would typically
produce two curvelets, a reflected and a refracted curvelet. This is merely an intuition which one would need
to justify by a careful analysis quantifying the behavior of a curvelet near the interface (here, the singular
surface). We regard this type of question as an important extension to this work.

The estimates proven in this paper are motivated by efforts towards applications as sparser expansions
theoretically lead to better and faster algorithms. Our goal is to transform our theoretical insights into
effective algorithms, and derive fast accurate solvers to certain classes of partial differential equations for
which our methods have a comparative advantage. In this direction, suppose that a discretized version EN (t)
of the curvelet matrix E(t) is known in the sense that it has been precomputed once for all. Assuming that
discretized version inherits the sparsity from its continuous analog, then for each initial value problem, we
would have available a fast algorithm for calculating the solution of the full wave equation. Indeed, Corollary
1.2 asserts that the truncated matrix trunc(EN (t)) obtained by keeping only O(ε1/m) terms per row obeys

‖EN (t)− trunc(EN (t))‖ ≤ ε.

Therefore, ignoring the cost of the digital curvelet transform, the total cost of an algorithm calculating the
solution of a full wave equation to within accuracy ε would be linear in the number of unknowns (number
of voxels) and scale at most like C(ε) ·N . This is not the most practically relevant situation, however, as in
general, one would not know EN (t). Work in progress shows that one can still design effective algorithms to
‘build’ the matrix EN (t), and for all practical purposes compute the solution of the full wave equation for a
given accuracy ε in O(N(logN)2).

Finally, we would like to conclude by pointing out that there is now considerable evidence that the curvelet
transform is a very useful mathematical architecture; curvelets can do things that other classical systems
simply cannot do. This paper proved that tight-frames of curvelets provide optimally sparse representations
of large classes of linear systems of hyperbolic differential equations. But they also allow for optimally sparse
representations of wavefront phenomena [7]. Further, they can also be useful in many different settings. For
example, they have useful microlocal features which make them especially suitable for deployment in many
inverse problems and especially limited-angle tomography [9]. In short, curvelets addresses a new range of
problems, going beyond what traditional multiscale systems offer.

A Appendix

A.1 Additional proofs for section 2

Proof of proposition 2.2. These four properties were already formulated in [28], although with a slightly
weaker definition of pseudo-distance. Properties 1 and 2 are not proved in that reference, and property 3 is
not extensively documented. We give the justification for these three results for completeness.
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Figure 4: Relative position and orientation of two curvelet molecules in x-space. The ellipses indicate their
essential support.

Claim (1). We are to show that d(µ, µ′) � d(µ′, µ). With eµ = ξµ/|ξµ|, this is

|〈eµ,∆x〉|+ |∆x|2 + |∆θ|2 � |〈eµ′ ,∆x〉|+ |∆x|2 + |∆θ|2.

It is sufficient to notice that

|〈eµ,∆x〉|+ |∆x|2 + |∆θ|2 � |〈eµ,∆x〉|+ |〈eµ′ ,∆x〉|+ |∆x|2 + |∆θ|2.

In order to justify the nontrivial inequality, use the law of cosines illustrated in Figure 4:

|〈eµ,∆x〉|2 + |〈eµ′ ,∆x〉|2 = sin2 |∆θ| (d2
µ + d2

µ′)

= sin2 |∆θ| |∆x|2 ± 2|〈eµ,∆x〉| |〈eµ′ ,∆x〉| cos |∆θ|
≤ sin2 |∆θ| |∆x|2 + 2|〈eµ,∆x〉| |〈eµ′ ,∆x〉|.

It follows that ||〈eµ,∆x〉| − |〈eµ′ ,∆x〉|| ≤ C · |∆θ||∆x| ≤ C · (|∆θ|2 + |∆x|2) and, therefore,

|〈eµ,∆x〉|+ |〈eµ′ ,∆x〉| ≤ C · (2|〈eµ,∆x〉|+ |∆θ|2 + |∆x|2).

Claim (2). Recall that ω(µ, µ′) = 2|j−j′|(1+2min(j,j′)d(µ, µ′)). Let us show that d(µ, µ′) ≤ C · (d(µ, µ′′)+
d(µ′′, µ′)). To simplify notations, set in the coordinates defined by {eµ, e

⊥
µ },

xµ = (0, 0) xµ′ = (x1, x2) xµ′′ = (y1, y2)
eµ = (1, 0) eµ′ = (cosα, sinα) eµ′′ = (cosβ, sinβ)
|θl − θl′′ | = |β| |θl′ − θl′′ | = |α− β|

It is enough to show that there exists ε > 0 such that

ε|x1| ≤ |y1|+ | cosα(x1 − y1) + sinβ(x2 − y2)|
+ (|β|+ |α− β|)(|y1|+ |x1 − y1|+ |y2|+ |x2 − y2|),

because then (|β| + |α − β|)(|y1| + |x1 − y1| + |y2| + |x2 − y2|) ≤ C · (|β|2 + |α − β|2 + |y1|2 + |x1 − y1|2 +
|y2|2 + |x2 − y2|2). By contradiction let us assume that the inequality fails. Then we must have |y1| < ε|x1|.
It is always true that |x1 − y1|+ |y1| ≥ |x1| so it is necessary that |β|+ |α− β| < ε. But then |α| < 2ε thus
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cosα > 1− 4ε2 and | sinα| < 2ε. The term | cosα(x1 − y1) + sinβ(x2 − y2)| is therefore always greater than
(1− 4ε2)|x1− y1|− ε|x2− y2|. But this quantity must also be less than ε|x1− y1|, otherwise its sum with |y1|
would exceed ε|x1|. So we must have |x2−y2| > 1−ε−4ε2

ε |x1−y1|. But then the sum |y1|+ |x1−y1|+ |x2−y2|
must dominate |x1|

2ε , which implies |β|+ |α − β| ≤ 2ε2. By induction, α = β = 0 and |y1|+ |x1 − y1| ≥ |x1|
yields a contradiction.

Claim (3). We need to establish that
∑

µ1
ω(µ0, µ1)−N ·ω(µ1, µ2)−N ≤ CN ·ω(µ0, µ2)−(N−1). We closely

follow and expand the argument in [28]. We will need to use d(µ0, µ1) � d(µ1, µ0), as we have just showed.
Define Iµ1 by

Iµ1 := ω(µ2, µ1)−N · ω(µ1, µ0)−N

=
(
2|j2−j1|+|j1−j0|(1 + 2min(j2,j1)d(µ2, µ1))(1 + 2min(j0,j1)d(µ0, µ1))

)−N

.

To ease notations, put temporarily a0 = 2min(j0,j1), a2 = 2min(j2,j1), d01 = d(µ0, µ1), and d12 = d(µ2, µ1).
We develop a lower bound on (1+a2d12)(1+a0d01) = 1+a2d12 +a0d01 +a2d12a0d01. We make three simple
observations: first,

a2d12 + a0d01 ≥ min(a2, a0)(d12 + d01) = A0, and d12 + d01 ≥ C · d(µ0, µ2);

second,
a2d12 + a0d01 ≥ max(a2d12, a0d01) ≥ max(a2, a0) min(d12, d01) = B0;

and third

a2d12a0d01 = max(a2, a0) min(a2, a0) max(d12, d01) min(d12, d01)

≥ max(a2, a0) min(a2, a0) min(d12, d01)
d12 + d01

2
= A0B0/2.

This gives

1 + a2d12 + a0d01 + a2d12a0d01 ≥
1
2

(1 +A0 +B0 +A0B0) ≥
1
2
(1 +A0)(1 +B0).

We replace the values of A0, B0 by their expression, use the relation A0 ≥ d(µ0, µ2) and obtain

Iµ1 ≤ C · 2−(|j2−j1|+|j0−j1|)N ·
(
1 + 2min(j2,j0,j1)d(µ2, µ0)

)−N

· (L1)−N (A.1)

with
L1 = 1 + max(2min(j2,j1), 2min(j0,j1)) min(d01, d12).

Note that

L1 = min
(
1 + max(2min(j2,j1), 2min(j0,j1))d12, 1 + max(2min(j2,j1), 2min(j0,j1))d01

)
≥ min

(
1 + 2min(j2,j1)d12, 1 + 2min(j0,j1)d01

)
and, therefore,

(L1)−N ≤ max
(
(1 + 2min(j2,j1)d12)−N , (1 + 2min(j0,j1)d01)−N

)
≤ (1 + 2min(j2,j1)d12)−N + (1 + 2min(j0,j1)d01)−N .

In the sequel we will repeatedly make use of the bound∑
k,`

(1 + 2qd(µ, µ′))−N ≤ C · 22(j−q)+ , (A.2)
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valid for N ≥ 2, any real q and where the subscript + denotes the positive part. This is justified as follows.
Without loss of generality, assume that µ′ = (j′, 0, 0) so that the curvelet γµ′ is nearly vertical and centered
near the origin. We recall that ∆θ = π · ` · 2−bj/2c, ` = 0, 1, . . . 2bj/2c− 1, and xµ = Rθµ

D−1
j k, say. Then the

left-hand side is
2bj/2c−1∑

`=0

∑
k∈Z2

(
1 + 2q(|2−j/2`|2 + |2−j/2k2|2 + |2−jk1|)

)−N

. (A.3)

For j ≥ q this can be seen as a Riemann sum and bounded—up to a numerical multiplicative constant—by
the corresponding integral ∫

R2

dx

2−3j/2

∫
R

dy

2−j/2
[1 + 2q(y2 + x2

2 + |x1|)]−N

which in turn is less than C · 22(j−q) provided N ≥ 2. For j ≤ q, the sum (A.3) essentially consists of a few
terms, giving a O(1) contribution. This gives the bound C · 22(j−q)+ .

By symmetry, we can now assume j0 ≤ j2. Let us consider three cases.

• 0 ≤ j2 ≤ j1. In that case we have the bound

(L1)−N ≤ C · [(1 + 2j2d01)−N + (1 + 2j2d12)−N ].

Summing this quantity over k1 and `1 i.e., over all µ1 that correspond to a given j1, and using (A.2),
we obtain for j1 ≥ j2 ∑

µ1

Iµ1 ≤ C · (1 + 2j0d02)−N
∑

j1≥j2

2−(2j1−j0−j2)N · 22(j1−j2)

≤ C · 2−(j2−j0)N (1 + 2j0d02)−N = C · ω(µ0, µ2)−N .

• 0 ≤ j1 ≤ j0. We now have

(L1)−N ≤ C · [(1 + 2j1d01)−N + (1 + 2j1d12)−N ].

According to (A.2), the sum over k1 and `1 of (L1)−N is bounded by a constant independent of j1.
The remaining sum is ∑

µ1

Iµ1 ≤ C · 2−(j0+j2)N
∑

j1≤j0

22j1N · (1 + 2j1d02)−N .

Observe that 2j1N (1 + 2j1d02)−N ≤ 2j0N (1 + 2j0d02)−N , therefore∑
µ1

Iµ1 ≤ C · 2−(j2−j0)N (1 + 2j0d02)−N = C · ω(µ0, µ2)−N .

• j0 ≤ j1 ≤ j2. In that case we still have

(L1)−N ≤ C · [(1 + 2j1d01)−N + (1 + 2j1d12)−N ].

summed over k1 and `1 into a O(1) contribution. What remains is∑
µ1

Iµ1 ≤ C · 2−(j2−j0)N (1 + 2j0d02)−N
∑

j0≤j1≤j2

1

≤ C · ω(µ0, µ2)−(N−1).
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We conclude by collecting the estimates corresponding to the three different cases. Remark that the loss of
one (fractional) power of ω in the third case is unavoidable unless one modifies its definition in the spirit of
[28]. This would however make notations unnecessarily heavy.

Claim (4). See [28] p. 804.

Proof of the inequality (2.14). Assume without loss of generality that µ = µ0. We may express Sµ′(ξ) as
Sµ′0

(R∆θξ), with ∆θ = θµ − θµ′ . We begin by expressing the integral in polar coordinates,

ξ1 = r cos θ (R∆θξ)1 = r cos(θ + ∆θ),
ξ2 = r sin θ (R∆θξ)2 = r sin(θ + ∆θ).

As we can see, the cosine factor is not crucial and we may just as well drop it. Consequently,∫
|Sµ(ξ)Sµ′(ξ)|n dξ ≤ C·

∫ ∞

0

rdr
1

[1 + 2−jr]N
1

[1 + 2−j′r]N

×
∫ 2π

0

dθ[1 + a| sin θ|]−N [1 + a′| sin(θ + ∆θ)|]−N ,

where a = 2−j/2r
1+2−jr and a′ = 2−j′/2r

1+2−j′r
. This decoupling makes the problem of bounding the inner integral on

the variable θ tractable. For example when a > a′ > 1, following [24] p.56,∫ ∞

−∞
dθ[1 + a|θ|]−N [1 + a′|θ + ∆θ|]−N ≤ C · 1

a

1
[1 + a′|∆θ|]N

.

We get other estimates for other values and orderings of a and a′. The integral on r is then broken up into
several pieces according to the values of a, a′, j and j′. It is straightforward to show that each of these
contributions satisfies the inequality (2.14).

A.2 Additional proofs for section 5

Proof of lemma 5.4. By definition a(µ)(x) = 2−3j/4mµ

(
D2−jRθµ

x− k
)

and, therefore,

a(µ)(x) =
1
αµ

∫
(Rf)(a, θ, b)a3/42−3j/4ψ(DaRθ(R−1

θµ
D2j (x+ k)− b) dµ

=
1
αµ

∫
(Rf)(a, θ, b)|A|1/2ψ (A(x− (β − k)) dµ, (A.4)

where A = DaRδD2j with δ = θ − θµ and β = D2−jRθµ
b.

Let us first verify the assertion about the support of a(µ). Recall that over a cell Qµ, β ∈ [k1, k1 + 1)×
[k2, k2 + 1), and hence for all b ∈ Qµ, we have

Suppψ (A(x− (β − k))) ⊂ Suppψ(Ax) + [0, 1]2.

Next Suppψ(Ax) ⊂ A−1[0, 1]2 with A−1 = D2−jR−δD
−1
a . It is not difficult to check that A−1[0, 1]2 ⊂

[c1, c2)× [d1, d2) which then gives (5.19).
There are several ways to prove the property about nearly vanishing moments. A possibility is to show

that the Fourier transform of a(µ) is appropriately small in a neighborhood of the axis ξ1 = 0. We choose a
more direct strategy and show that∣∣∣∣∫ ψ(A(x− β))xk

1 dx1

∣∣∣∣ ≤ Cm · 2−j(m+1). (A.5)
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uniformly over the (a, θ, b) ∈ Qµ. The property (5.20) follows from this fact. Indeed,∫
a(µ)(x1, x2)xk

1 dx1 =
1
αµ

∫
Qµ

Rf(a, θ, b)dµ
∫
|A|1/2ψ(A(x− β))xk

1 dx1,

and the Cauchy-Schwarz inequality gives

∣∣∣∣∫ a(µ)(x1, x2)xk
1 dx1

∣∣∣∣ ≤ 1
αµ

‖Rf‖L2(Qµ)

(∫
Qµ

∣∣∣∣∫ |A|1/2ψ(A(x− β))xk
1 dx1

∣∣∣∣2 dµ
)1/2

=

(∫
Qµ

∣∣∣∣∫ |A|1/2ψ(A(x− β))xk
1 dx1

∣∣∣∣2 dµ
)1/2

.

The uniform bound (A.5) together with the fact that
∫

Qµ
dµ is either 3π or 3π/2 gives (5.20).

We then need to establish (A.5). Let ∂2 be ∂/∂x2, recall that by assumption (5.12)–(5.13), we have that
for all x2 ∈ R, ∫

∂n
2 ψ(x1, x2)xk

1 dx1 = 0, k = 0, 1, . . . , R,

and more generally, for each α 6= 0 and β∫
∂n
2 ψ(αx1 + β, x2)xk

1 dx1 = 0, k = 0, 1, . . . , R. (A.6)

We shall use (A.6) to prove (A.5). Letting

A =
(
a11 a12

a21 a22

)
and with the same notations as before, a simple calculation shows that a21 = − 2−j sin δ√

a
. As a ≥ 2−(j+1) and

|δ| ≤ π/2 · 2−bj/2c, we have
|a21| ≤ c · 2−j . (A.7)

We then write

ψ(Ax) = ψ(a11x1 + a12x2, a21x1 + a22x2)

=
N−1∑
n=0

Dnψ(a11x1 + a12x2, a22x2)
(a21x1)n

n!
+O((a21x1)N )

and, therefore, ∫
ψ(Ax)xk

1 dx1 =
N−1∑
n=0

an
21

n!

∫
Dnψ(a11x1 + a12x2, a22x2)xn+k

1 dx1 +O(aN
21)

Fix k ≤ D and pick N = D − k + 1 so that for n = 0, 1, . . . , N − 1, n + k ≤ D. By virtue of (A.6) all the
integrals in the sum vanish and the only remaining term is O(aN

21) which because of (A.7) is O(2−jN ). As a
consequence, setting m = D/2, we conclude that∣∣∣∣∫ ψ(Ax)xk

1 dx1

∣∣∣∣ ≤ Cm · 2−j(m+1), k = 0, 1, . . .m;

this is the content of (A.5).
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The careful reader will notice that inequality (A.5) or equivalently (5.20) is a weaker statement than
inequality (2.6) for the definition of nearly vanishing moments. There is no doubt that the stronger estimate
(2.6) also holds for curvelet atoms. The proof of this fact uses standard arguments and we choose not to
reproduce it here.

Last, the regularity property is a simple consequence of the Cauchy Schwarz inequality;∣∣∣a(µ)(x1, x2)
∣∣∣ ≤ 1

αµ

∫
|Rf(a, θ, b)||A|1/2‖ψ‖L∞ dµ

≤ ‖ψ‖L∞ · 1
αµ
‖Rf‖L2(Qµ) ·

(∫
Qµ

|A|dµ

)1/2

= 2
√

3π · ‖ψ‖L∞ .

These last inequalities used the facts that |A| ≤ 4 for (a, θ, b) ∈ Qµ and
∫

Qµ
dµ ≤ 3π. Estimates for higher

derivatives are obtained in exactly the same fashion–after differentiation of the integrand. This finishes the
proof of the lemma.

Proof of (5.22). Recall that

αµµ′ =

(∫
Qµ′

|R(q(D)γµ)(a, b, θ)|2 dµ

)1/2

.

The first thing to notice is that q(D)γµ is still a family of curvelet molecules, because q(ξ) is a multiplier
of order zero. Since ψa,θ,b also obeys the molecule properties, lemma 2.3 implies the corresponding almost-
orthogonality condition. Integrating over Qµ′ does not compromise this estimate, as can be seen by applying
the Cauchy-Schwarz inequality.

Proof of inequality (5.6). Derivatives of γ̂µ and σ are treated using the following estimates.

|∂α
ξ γ̂µ(ξ)| ≤ Cα · 2−3j/42−α1j2−α2j/2

|∂α
ξ σ(φ−1(x), ξ)| ≤ Cα · 2−|α|j on Wµ = supp(γ̂µ).

We now develop size estimates for the phase perturbation δ. Following closely the discussion in [30], p.407,
we claim that on Wµ,

|∂α
ξ ∂

β
x δ(x, ξ)| ≤ Cαβ · 2−α1j2−α2j/2. (A.8)

The derivations in x add no complications. Hence, assume that β = 0. As the above result (A.8) relies upon
the homogeneity of the phase with respect to ξ, we recall a few useful facts about homogeneous functions of
degree one:

Φ = Φξ · ξ (Euler’s theorem),

Φξξ · ξ = 0 (differentiate the above relation),

∂α
ξ Φ = O(|ξ|1−|α|) .

It follows from the definition that δ(x, ξ1, 0) = 0 and likewise ∂δ
∂ξ2

(x, ξ1, 0) = 0. Thus for every n, ∂nδ
∂ξn

1
(x, ξ1, 0) =

0 and ∂
∂ξ2

∂nδ
∂ξn

1
(x, ξ1, 0) = 0. Recall that the support conditions are |ξ1| ≤ C · 2j and |ξ2| ≤ C · 2j/2. Taylor
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series expansions about ξ2 = 0 together with homogeneity assumptions give

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ2|2|ξ|−1−α1) = O(2−α1j),

∂

∂ξ2

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ2||ξ|−1−α1) = O(2−j/22−α1j),

∂α2

∂ξα2
2

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ|1−α1−α2) = O(2−α1j2−α2j/2) when α2 ≥ 2,

as claimed. The point about these estimates is that they exhibit exactly the parabolic scaling of curvelets.
We conclude

|∂α
ξ e

iδ(φ−1(x),ξ)| ≤ Cα · 2−α1j2−α2j/2 on Wµ

and therefore (5.6).
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[33] Trèves, F. Introduction to pseudo-differential and Fourier integral operators. Plenum press, 1982, 2
volumes.

[34] Whitham, G. Linear and nonlinear waves. Wiley Interscience, 1999.

44


