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Abstract

This paper describes two digital implementations of a new mathematical transform, namely,
the second generation curvelet transform [12, 10] in two and three dimensions. The first digital
transformation is based on unequally-spaced fast Fourier transforms (USFFT) while the second is
based on the wrapping of specially selected Fourier samples. The two implementations essentially
differ by the choice of spatial grid used to translate curvelets at each scale and angle. Both digital
transformations return a table of digital curvelet coefficients indexed by a scale parameter, an
orientation parameter, and a spatial location parameter. And both implementations are fast in
the sense that they run in O(n2 log n) flops for n by n Cartesian arrays; in addition, they are
also invertible, with rapid inversion algorithms of about the same complexity.

Our digital transformations improve upon earlier implementations—based upon the first
generation of curvelets—in the sense that they are conceptually simpler, faster and far less
redundant. The software CurveLab, which implements both transforms presented in this paper,
is available at http://www.curvelet.org.
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1 Introduction

1.1 Classical Multiscale Analysis

The last two decades have seen tremendous activity in the development of new mathematical and
computational tools based on multiscale ideas. Today, multiscale/multiresolution ideas permeate
many fields of contemporary science and technology. In the information sciences and especially
signal processing, the development of wavelets and related ideas led to convenient tools to navigate
through large datasets, to transmit compressed data rapidly, to remove noise from signals and
images, and to identify crucial transient features in such datasets. In the field of scientific comput-
ing, wavelets and related multiscale methods sometimes allow for the speeding up of fundamental
scientific computations such as in the numerical evaluation of the solution of partial differential
equations [2]. By now, multiscale thinking is associated with an impressive and ever increasing list
of success stories.

Despite considerable success, intense research in the last few years has shown that classical mul-
tiresolution ideas are far from being universally effective. Indeed, just as people recognized that
Fourier methods were not good for all purposes—and consequently introduced new systems such
as wavelets—researchers have sought alternatives to wavelet analysis. In signal processing for ex-
ample, one has to deal with the fact that interesting phenomena occur along curves or sheets, e.g.,
edges in a two-dimensional image. While wavelets are certainly suitable for dealing with objects
where the interesting phenomena, e.g., singularities, are associated with exceptional points, they
are ill-suited for detecting, organizing, or providing a compact representation of intermediate di-
mensional structures. Given the significance of such intermediate dimensional phenomena, there
has been a vigorous research effort to provide better adapted alternatives by combining ideas from
geometry with ideas from traditional multiscale analysis [17, 19, 4, 31, 14, 16].

1.2 Why a Discrete Curvelet Transform?

A special member of this emerging family of multiscale geometric transforms is the curvelet trans-
form [8, 12, 10] which was developed in the last few years in an attempt to overcome inherent
limitations of traditional multiscale representations such as wavelets. Conceptually, the curvelet
transform is a multiscale pyramid with many directions and positions at each length scale, and
needle-shaped elements at fine scales. This pyramid is nonstandard, however. Indeed, curvelets
have useful geometric features that set them apart from wavelets and the likes. For instance,
curvelets obey a parabolic scaling relation which says that at scale 2−j , each element has an enve-
lope which is aligned along a “ridge” of length 2−j/2 and width 2−j . We postpone the mathematical
treatment of the curvelet transform to Section 2, and focus instead on the reasons why one might
care about this new transformation and by extension, why it might be important to develop accurate
discrete curvelet transforms.

Curvelets are interesting because they efficiently address very important problems where wavelet
ideas are far from ideal. We give three examples:

1. Optimally sparse representation of objects with edges. Curvelets provide optimally sparse
representations of objects which display curve-punctuated smoothness—smoothness except
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for discontinuity along a general curve with bounded curvature. Such representations are
nearly as sparse as if the object were not singular and turn out to be far more sparse than
the wavelet decomposition of the object.

This phenomenon has immediate applications in approximation theory and in statistical esti-
mation. In approximation theory, let fm be the m-term curvelet approximation (correspond-
ing to the m largest coefficients in the curvelet series) to an object f(x1, x2) ∈ L2(R2). Then
the enhanced sparsity says that if the object f is singular along a generic smooth C2 curve
but otherwise smooth, the approximation error obeys

‖f − fm‖2
L2 ≤ C · (logm)3 ·m−2,

and is optimal in the sense that no other representation can yield a smaller asymptotic error
with the same number of terms. The implication in statistics is that one can recover such
objects from noisy data by simple curvelet shrinkage and obtain a Mean Squared Error (MSE)
order of magnitude better than what is achieved by more traditional methods. In fact, the
recovery is provably asymptotically near-optimal. The statistical optimality of the curvelet
shrinkage extends to other situations involving indirect measurements as in a large class of
ill-posed inverse problems [9].

2. Optimally sparse representation of wave propagators. Curvelets may also be a very significant
tool for the analysis and the computation of partial differential equations. For example, a
remarkable property is that curvelets faithfully model the geometry of wave propagation.
Indeed, the action of the wave-group on a curvelet is well approximated by simply translating
the center of the curvelet along the Hamiltonian flows. A physical interpretation of this result
is that curvelets may be viewed as coherent waveforms with enough frequency localization so
that they behave like waves but at the same time, with enough spatial localization so that
they simultaneously behave like particles [5, 36].

This can be rigorously quantified. Consider a symmetric system of linear hyperbolic differ-
ential equations of the form

∂u

∂t
+

∑
k

Ak(x)
∂u

∂xk
+B(x)u = 0, u(0, x) = u0(x), (1.1)

where u is an m-dimensional vector and x ∈ Rn. The matrices Ak and B may smoothly
depend on the spatial variable x, and the Ak are symmetric. Let Et be the solution operator
mapping the wavefield u(0, x) at time zero into the wavefield u(t, x) at time t. Suppose that
(ϕn) is a (vector-valued) tight frame of curvelets. Then [5] shows that the curvelet matrix

Et(n, n′) = 〈ϕn, Etϕn′〉 (1.2)

is sparse and well-organized. It is sparse in the sense that the matrix entries in an arbitrary
row or column decay nearly exponentially fast (i.e., faster than any negative polynomial).
And it is well-organized in the sense that the very few nonnegligible entries occur near a few
shifted diagonals. Informally speaking, one can think of curvelets as near-eigenfunctions of
the solution operator to a large class of hyperbolic differential equations.

On the one hand, the enhanced sparsity simplifies mathematical analysis and allows to prove
sharper inequalities. On the other hand, the enhanced sparsity of the solution operator in
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the curvelet domain allows the design of new numerical algorithms with far better asymptotic
properties in terms of the number of computations required to achieve a given accuracy [6].

3. Optimal image reconstruction in severely ill-posed problems. Curvelets also have special mi-
crolocal features which make them especially adapted to certain reconstruction problems with
missing data. For example, in many important medical applications, one wishes to recon-
struct an object f(x1, x2) from noisy and incomplete tomographic data [33], i.e., a subset of
line integrals of f corrupted by additive moise modeling uncertainty in the measurements.

Because of its relevance in biomedical imaging, this problem has been extensively studied
(compare the vast literature on computed tomography). Yet, curvelets offer surprisingly new
quantitative insights [11]. For example, a beautiful application of the phase-space localization
of the curvelet transform allows a very precise description of those features of the object of
f which can be reconstructed accurately from such data and how well, and of those features
which cannot be recovered. Roughly speaking, the data acquisition geometry separates the
curvelet expansion of the object into two pieces

f =
∑

n∈Good

〈f, ϕn〉ϕn +
∑

n/∈Good

〈f, ϕn〉ϕn.

The first part of the expansion can be recovered accurately while the second part cannot.
What is interesting here is that one can provably reconstruct the “recoverable” part with an
accuracy similar to that one would achieve even if one had complete data. There is indeed a
quantitative theory showing that for some statistical models which allow for discontinuities
in the object to be recovered, there are simple algorithms based on the shrinkage of curvelet-
biorthogonal decompositions, which achieve optimal statistical rates of convergence; that
is, such that there are no other estimating procedure which, in an asymptotic sense, give
fundamentally better MSEs [11].

To summarize, the curvelet transform is mathematically valid, and a very promising potential in
traditional (and perhaps less traditional) application areas for wavelet-like ideas such as image
processing, data analysis, and scientific computing clearly lies ahead. To realize this potential
though, and deploy this technology to a wide range of problems, one would need a fast and accurate
discrete curvelet transform operating on digital data. This is the object of this paper.

1.3 A New Discrete Curvelet Transform

Curvelets were first introduced in [8] and have been around for a little over five years by now.
Soon after their introduction, researchers developed numerical algorithms for their implementation
[37, 18], and scientists have started to report on a series of practical successes, see [39, 38, 27, 26, 20]
for example. Now these implementations are based on the original construction [8] which uses a
pre-processing step involving a special partitioning of phase-space followed by the ridgelet transform
[4, 7] which is applied to blocks of data that are well localized in space and frequency.

In the last two or three years, however, curvelets have actually been redesigned in a effort to make
them easier to use and understand. As a result, the new construction is considerably simpler and
totally transparent. What is interesting here is that the new mathematical architecture suggests
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innovative algorithmic strategies, and provides the opportunity to improve upon earlier implemen-
tations. This paper develops two new fast discrete curvelet transforms (FDCTs) which are simpler,
faster, and less redundant than existing proposals:

• Curvelets via USFFT, and

• Curvelets via Wrapping.

Both FDCTs run in O(n2 log n) flops for n by n Cartesian arrays, and are also invertible, with
rapid inversion algorithms of about the same complexity. To substantiate the pay-off, consider one
of these FDCTs, namely, the FDCT via wrapping: first and unlike earlier discrete transforms, this
implementation is a numerical isometry; second, its effective computational complexity is 6 to 10
times that of an FFT operating on an array of the same size, making it ideal for deployment in
large scale scientific applications.

1.4 Organization of the Paper

The paper is organized as follows. We begin in Section 2 by rehearsing the main features of the
curvelet transform for continuous-time objects with an emphasis on its mathematical architecture.
Section 3 introduces the main ideas underlying the USFFT-based and the wrapping-based digital
implementations which are then detailed in Sections 4 and 6 respectively. We address the problem
of computing Fourier transforms on irregular grids in Section 5. Section 7 discusses refinements and
extensions of the ideas underlying the discrete transforms while Section 8 illustrates our methods
with a few numerical experiments. Finally, we conclude with Section 9 which introduces open
problems, explains connections with the work of others, and outlines possible applications of these
transforms.

1.5 CurveLab

The software package CurveLab implements the transforms proposed in this paper, and is available
at http://www.curvelet.org. It contains the Matlab and C++ implementations of both the USFFT-
based and the wrapping-based transforms. Several Matlab scripts are provided to demonstrate
how to use this software. Additionally, three different implementations of the 3D discrete curvelet
transform are also included.

2 Continuous-Time Curvelet Transforms

We work throughout in two dimensions, i.e., R2, with spatial variable x, with ω a frequency-
domain variable, and with r and θ polar coordinates in the frequency-domain. We start with a
pair of windows W (r) and V (t), which we will call the “radial window” and “angular window,”
respectively. These are both smooth, nonnegative and real-valued, with W taking positive real
arguments and supported on r ∈ (1/2, 2) and V taking real arguments and supported on t ∈ [−1, 1].
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These windows will always obey the admissibility conditions:

∞∑
j=−∞

W 2(2jr) = 1, r ∈ (3/4, 3/2); (2.1)

∞∑
`=−∞

V 2(t− `) = 1, t ∈ (−1/2, 1/2). (2.2)

Now, for each j ≥ j0, we introduce the frequency window Uj defined in the Fourier domain by

Uj(r, θ) = 2−3j/4W (2−jr)V (
2bj/2cθ

2π
). (2.3)

where bj/2c is the integer part of j/2. Thus the support of Uj is a polar “wedge” defined by the
support of W and V , the radial and angular windows, applied with scale-dependent window widths
in each direction. To obtain real-valued curvelets, we work with the symmetrized version of (2.3),
namely, Uj(r, θ) + Uj(r, θ + π).

Define the waveform ϕj(x) by means of its Fourier transform ϕ̂j(ω) = Uj(ω) (we abuse notations
slightly here by letting Uj(ω1, ω2) be the window defined in the polar coordinate system by (2.3)).
We may think of ϕj as a “mother” curvelet in the sense that all curvelets at scale 2−j are obtained
by rotations and translations of ϕj . Introduce

• the equispaced sequence of rotation angles θ` = 2π · 2−bj/2c · `, with ` = 0, 1, . . . such that
0 ≤ θ` < 2π (note that the spacing between consecutive angles is scale-dependent),

• and the sequence of translation parameters k = (k1, k2) ∈ Z2.

With these notations, we define curvelets (as function of x = (x1, x2)) at scale 2−j , orientation θ`

and position x(j,`)
k = R−1

θ`
(k1 · 2−j , k2 · 2−j/2) by

ϕj,`,k(x) = ϕj

(
Rθ`

(x− x
(j,`)
k )

)
,

where Rθ is the rotation by θ radians and R−1
θ its inverse (also its transpose),

Rθ =
(

cos θ sin θ
− sin θ cos θ

)
, R−1

θ = RT
θ = R−θ.

A curvelet coefficient is then simply the inner product between an element f ∈ L2(R2) and a
curvelet ϕj,`,k,

c(j, `, k) := 〈f, ϕj,`,k〉 =
∫
R2

f(x)ϕj,`,k(x) dx. (2.4)

Since digital curvelet transforms operate in the frequency domain, it will prove useful to apply
Plancherel’s theorem and express this inner product as the integral over the frequency plane

c(j, `, k) :=
1

(2π)2

∫
f̂(ω) ϕ̂j,`,k(ω) dω =

1
(2π)2

∫
f̂(ω)Uj(Rθ`

ω)ei〈x
(j,`)
k ,ω〉 dω. (2.5)
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Figure 1: Curvelet tiling of space and frequency. The figure on the left represents the induced tiling
of the frequency plane. In Fourier space, curvelets are supported near a “parabolic” wedge, and
the shaded area represents such a generic wedge. The figure on the right schematically represents
the spatial Cartesian grid associated with a given scale and orientation.

As in wavelet theory, we also have coarse scale elements. We introduce the low-pass window W0

obeying
|W0(r)|2 +

∑
j≥0

|W (2−jr)|2 = 1,

and for k1, k2 ∈ Z, define coarse scale curvelets as

ϕj0,k(x) = ϕj0(x− 2−j0k), ϕ̂j0(ω) = 2−j0W0(2−j0 |ω|).

Hence, coarse scale curvelets are nondirectional. The “full” curvelet transform consists of the fine-
scale directional elements (ϕj,`,k)j≥j0,`,k and of the coarse-scale isotropic father wavelets (Φj0,k)k. It
is the behavior of the fine-scale directional elements that are of interest here. Figure 1 summarizes
the key components of the construction.

We now list a few properties of the curvelet transform.

1. Tight frame. Much like in an orthonormal basis, we can easily expand an arbitrary function
f(x1, x2) ∈ L2(R2) as a series of curvelets: we have a reconstruction formula

f =
∑
j,`,k

〈f, ϕj,`,k〉ϕj,`,k, (2.6)

with equality holding in an L2 sense; and a Parseval relation∑
j,`,k

|〈f, ϕj,`,k〉|2 = ‖f‖2
L2(R2), ∀f ∈ L2(R2). (2.7)
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(In both (2.6) and (2.7), the summation extends to the coarse scale elements.)

2. Parabolic scaling. The frequency localization of ϕj implies the following spatial structure:
ϕj(x) is of rapid decay away from a 2−j by 2−j/2 rectangle with major axis pointing in the
vertical direction. In short, the effective length and width obey the anisotropy scaling relation

length ≈ 2−j/2, width ≈ 2−j ⇒ width ≈ length2. (2.8)

3. Oscillatory behavior. As is apparent from its definition, ϕ̂j is actually supported away
from the vertical axis ω1 = 0 but near the horizontal ω2 = 0 axis. In a nutshell, this says that
ϕj(x) is oscillatory in the x1-direction and lowpass in the x2-direction. Hence, at scale 2−j ,
a curvelet is a little needle whose envelope is a specified “ridge” of effective length 2−j/2 and
width 2−j , and which displays an oscillatory behavior across the main “ridge”.

4. Vanishing moments. The curvelet template ϕj is said to have q vanishing moments when∫ ∞

−∞
ϕj(x1, x2)xn

1 dx1 = 0, for all 0 ≤ n < q, for all x2. (2.9)

The same property of course holds for rotated curvelets when x1 and x2 are taken to be
the corresponding rotated coordinates. Notice that the integral is taken in the direction
perpendicular to the ridge, so counting vanishing moments is a way to quantify the oscillation
property mentioned above. In the Fourier domain, (2.9) becomes a line of zeros with some
multiplicity:

∂nϕ̂j

∂ωn
1

(0, ω2) = 0, for all 0 ≤ n < q, for all ω2.

Curvelets as defined and implemented in this paper have an infinite number of vanishing
moments because they are compactly supported well away from the origin in the frequency
plane, as illustrated in Figures 1 and 2.

3 Digital Curvelet Transforms

In this paper, we propose two distinct implementations of the curvelet transform which are faithful
to the mathematical transformation outlined in the previous section. These digital transformations
are linear and take as input Cartesian arrays of the form f [t1, t2], 0 ≤ t1, t2 < n, which allows us to
think of the output as a collection of coefficients cD(j, `, k) obtained by the digital analog to (2.4)

cD(j, `, k) :=
∑

0≤t1,t2<n

f [t1, t2]ϕD
j,`,k[t1, t2], (3.1)

where each ϕD
j,`,k is a digital curvelet waveform (here and below, the superscript D stands for “digi-

tal”). As is standard in scientific computations, we will actually never build these digital waveforms
which are implicitly defined by the algorithms; formally, they are the rows of the matrix represent-
ing the linear transformation and are also known as Riesz representers. We merely introduce these
waveforms because it will make the exposition clearer and because it provides a useful way to
explain the relationship with the continuous-time transformation. The two digital transformations
share a common architecture which we introduce first, before elaborating on the main differences.
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3.1 Digital Coronization

In the continuous-time definition (2.3), the window Uj smoothly extracts frequencies near the dyadic
corona {2j ≤ r ≤ 2j+1} and near the angle {−π · 2−j/2 ≤ θ ≤ π · 2−j/2}. Coronae and rotations are
not especially adapted to Cartesian arrays. Instead, it is convenient to replace these concepts by
Cartesian equivalents; here, “Cartesian coronae” based on concentric squares (instead of circles)
and shears. For example, the Cartesian analog to the family (Wj)j≥0, Wj(ω) = W (2−jω), would
be a window of the form

W̃j(ω) =
√

Φ2
j+1(ω)− Φ2

j (ω), j ≥ 0,

where Φ is defined as the product of low-pass one dimensional windows

Φj(ω1, ω2) = φ(2−jω1)φ(2−jω2).

The function φ obeys 0 ≤ φ ≤ 1, might be equal to 1 on [−1/2, 1/2], and vanishes outside of [−2, 2].
It is immediate to check that

Φ0(ω)2 +
∑
j≥0

W̃ 2
j (ω) = 1. (3.2)

We have just seen how to separate scales in a Cartesian-friendly fashion and now examine the
angular localization. Suppose that V is as before, i.e., obeys (2.2) and set

Vj(ω) = V (2bj/2cω2/ω1).

We can then use W̃j and Vj to define the “Cartesian” window

Ũj(ω) := W̃j(ω)Vj(ω). (3.3)

It is clear that Ũj isolates frequencies near the wedge {(ω1, ω2) : 2j ≤ ω1 ≤ 2j+1, −2−j/2 ≤ ω2/ω1 ≤
2−j/2}, and is a Cartesian equivalent to the “polar” window of Section 2. Introduce now the set of
equispaced slopes tan θ` := ` · 2−bj/2c, ` = −2bj/2c, . . . , 2bj/2c − 1, and define

Ũj,`(ω) := Wj(ω)Vj(Sθ`
ω),

where Sθ is the shear matrix,

Sθ :=
(

1 0
− tan θ 1

)
.

The angles θ` are not equispaced here but the slopes are. When completed by symmetry around the
origin and rotation by ±π/2 radians, the Ũj,` define the Cartesian analog to the family Uj(Rθ`

ω)
of Section 2. The family Ũj,` implies a concentric tiling whose geometry is pictured in Figure 2.1

1There are other ways of defining such localizing windows. An alternative might be to select Ũj as

Ũj(ω) := ψj(ω1)Vj(ω), (3.4)

where ψj(ω1) = ψ(2−jω1) with ψ(ω1) =
p
φ(ω1/2)2 − φ(ω1)2 a bandpass profile, and to define for each θ` ∈

[−π/4, π/4)
Ũj,`(ω) := ψj(ω1)Vj(Sθ` ω) = Ũj(Sθ` ω).

With this special definition, the windows are shear-invariant at any given scale. In practice, both these choices are
almost equivalent since for a large number of angles of interest, many φ would actually give identical windows Ũj,`.
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Figure 2: The figure illustrates the basic digital tiling. The windows Ũj,` smoothly localize the
Fourier transform near the sheared wedges obeying the parabolic scaling. The shaded region rep-
resents one such typical wedge.

By construction, Vj(Sθ`
ω) = V (2bj/2cω2/ω1 − `) and for each ω = (ω1, ω2) with ω1 > 0, say, (2.2)

gives
∞∑

`=−∞
|Vj(Sθ`

ω)|2 = 1.

Because of the support constraint on the function V , the above sum restricted to the angles of
interest, −1 ≤ tan θ` < 1, obeys

∑
all angles |Vj(Sθ`

ω)|2 = 1, for ω2/ω1 ∈ [−1 + 2−bj/2c, 1− 2−bj/2c].
Therefore, it follows from (3.2) that ∑

all scales

∑
all angles

|Ũj,`(ω)|2 = 1. (3.5)

There is a way to define “corner” windows specially adapted to junctions over the four quadrants
(east, south, west, north) so that (3.5) holds for every ω ∈ R2. We postpone this technical issue to
Section 7.2.

The pseudopolar tiling of the frequency plane with trapezoids, in Figure 2, is already well-established
as a data-friendly alternative to the ideal polar tiling. It was perhaps first introduced in two articles
that appeared as book chapters in the same book, Beyond Wavelets, Academic Press, 2003. The
first construction is that of contourlets [15] and is based on a cascade of properly sheared direc-
tional filters. On the other hand, ridgelet packets [24] are defined directly in the frequency plane
via interpolation onto a pseudopolar grid aligned with the trapezoids.

In the next two sections we explain in parallel the two versions of the transform, namely via
USFFT and via Wrapping. In a nutshell, the two implementations differ in the way curvelets at
a given scale and angle are translated with respect to each other. In the USFFT-based version
the translation grid is tilted to be aligned with the orientation of the curvelet, yielding the most
faithful discretization of the continuous definition. In the Wrapping version the grid is the same for
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every angle within each quadrant—-yet each curvelet is given the proper orientation. As a result,
the wrapping-based transform may be simpler to understand and implement.

3.2 Digital Curvelet Transform via Unequispaced FFTs

In what follows, we choose to work with the windows as in (3.4) although one could easily adapt the
discussion to the other type, namely, (3.3). The digital coronization suggests Cartesian curvelets of
the form ϕ̃j,`,k(x) = 23j/4ϕ̃j(ST

θ`
(x− S−T

θ`
b)) where b takes on the discrete values b := (k1 · 2−j , k2 ·

2−j/2). The goal is to find a digital analog of the coefficients now given by

c(j, `, k) =
∫
f̂(ω)Ũj(S−1

θ`
ω)ei〈S

−T
θ`

b,ω〉
dω. (3.6)

Suppose for simplicity that θ` = 0. To numerically evaluate (3.6) with discrete data, one would
just (1) take the 2D FFT of the object f and obtain f̂ , (2) multiply f̂ with the window Ũj , and (3)
take the inverse Fourier transform on the appropriate Cartesian grid b = (k1 · 2−j , k2 · 2−j/2). The
difficulty here is that for θ` 6= 0, we are asked to evaluate the inverse discrete Fourier transform
(DFT) on the nonstandard sheared grid S−T

θ`
(k1 · 2−j , k2 · 2−j/2) and unfortunately, the classical

FFT algorithm does not apply. To recover the convenient rectangular grid, however, one can pass
the shearing operation to f̂ and rewrite (3.6) as

c(j, `, k) =
∫
f̂(ω)Ũj(S−1

θ`
ω)ei〈b,S

−1
θ`

ω〉
dω =

∫
f̂(Sθ`

ω)Ũj(ω)ei〈b,ω〉 dω. (3.7)

Suppose now that we are given a Cartesian array f [t1, t2], 0 ≤ t1, t2 < n and let f̂ [n1, n2] denote
its 2D discrete Fourier transform

f̂ [n1, n2] =
n−1∑

t1,t2=0

f [t1, t2]e−i2π(n1t1+n2t2)/n, −n/2 ≤ n1, n2 < n/2.

which here and below, we shall view as samples2

f̂ [n1, n2] = f̂(2πn1, 2πn2)

from the interpolating trigonometric polynomial, also denoted f̂ , and defined by

f̂(ω1, ω2) =
∑

0≤t1,t2<n

f [t1, t2]e−i(ω1t1+ω2t2)/n. (3.8)

Assume next that Ũj [n1, n2] is supported on some rectangle of length L1,j and width L2,j

Pj = {(n1, n2) : n1,0 ≤ n1 < n1,0 + L1,j , n2,0 ≤ n2 < n2,0 + L2,j}, (3.9)

2Notice the notational difference between brackets [·, ·] for array indices, and parentheses (·, ·) for function eval-
uations, which holds throughout this paper. Non-integer arguments n1, n2 in [n1, n2] are allowed and point to the
fact that some interpolation is necessary.
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(where (n1,0, n2,0) is the index of the pixel at the bottom-left of the rectangle.) Because of the
parabolic scaling, L1,j is about 2j and L2,j is about 2j/2. With these notations, the FDCT via
USFFT simply evaluates

cD(j, `, k) =
∑

n1,n2∈Pj

f̂ [n1, n2 − n1 tan θ`] Ũj [n1, n2] ei2π(k1n1/L1,j+k2n2/L2,j), (3.10)

(f̂ [n1, n2 − n1 tan θ`] = f̂(2πn1, 2π(n2 − n1 tan θ`))) and is therefore faithful to the original mathe-
matical transformation.

This point of view suggests a first implementation we shall refer to as the FDCT via USFFT, and
whose architecture is then roughly as follows:

1. Apply the 2D FFT and obtain Fourier samples f̂ [n1, n2], −n/2 ≤ n1, n2 < n/2.

2. For each scale/angle pair (j, `), resample (or interpolate) f̂ [n1, n2] to obtain sampled values
f̂ [n1, n2 − n1 tan θ`] for (n1, n2) ∈ Pj .

3. Multiply the interpolated (or sheared) object f̂ with the parabolic window Ũj , effectively
localizing f̂ near the parallelogram with orientation θ`, and obtain

f̃j,`[n1, n2] = f̂ [n1, n2 − n1 tan θ`] Ũj [n1, n2].

4. Apply the inverse 2D FFT to each f̃j,`, hence collecting the discrete coefficients cD(j, `, k).

Of all the steps, the interpolation step is the less standard and is discussed in details in Section
4; we shall see that it is possible to design an algorithm which, for practical purposes, is exact
and takes O(n2 log n) flops for computation, and requires O(n2) storage, where n2 is the number
of pixels.

3.3 Digital Curvelet Transform via Wrapping

The “wrapping” approach assumes the same digital coronization as in Section 3.1, but makes a
different, somewhat simpler choice of spatial grid to translate curvelets at each scale and angle.
Instead of a tilted grid, we assume a regular rectangular grid and define “Cartesian” curvelets in
essentially the same way as before,

c(j, `, k) =
∫
f̂(ω)Ũj(S−1

θ`
ω)ei〈b,ω〉 dω. (3.11)

Notice that the S−T
θ`
b of formula (3.6) has been replaced by b ' (k12−j , k22−j/2), taking on values

on a rectangular grid. As before, this formula for b is understood when θ ∈ (−π
4 ,

π
4 ) or (3π

4 ,
5π
4 ),

otherwise the roles of L1,j and L2,j are to be exchanged.

The difficulty behind this approach is that, in the frequency plane, the window Ũj,`[n1, n2] does not
fit in a rectangle of size ∼ 2j × 2j/2, aligned with the axes, in which the 2D IFFT could be applied
to compute (3.11). After discretization, the integral over ω becomes a sum over n1, n2 which would
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extend beyond the bounds allowed by the 2D IFFT. The resemblance of (3.11) with a standard 2D
inverse FFT is in that respect only formal.

To understand why respecting rectangle sizes is a concern, we recall that Ũj,` is supported in the
parallelepipedal region

Pj,` = Sθ`
Pj .

For most values of the angular variable θ`, Pj,` is supported inside a rectangle Rj,` aligned with the
axes, and with sidelengths both on the order of 2j . One could in principle use the 2D inverse FFT on
this larger rectangle instead. This is close in spirit to the discretization of the continuous directional
wavelet transform proposed by Vandergheynst and Gobbers in [41]. This seems ideal, but there is
an apparent downside to this approach: dramatic oversampling of the coefficients. In other words,
whereas the previous approach showed that it was possible to design curvelets with anisotropic
spatial spacing of about n/2j in one direction and n/2j/2 in the other, this approach would seem
to require a naive regular rectangular grid with sidelength about n/2j in both directions. In other
words, one would need to compute on the order of 22j coefficients per scale and angle as opposed,
to only about 23j/2 in the USFFT-based implementation. By looking at fine scale curvelets such
that 2j � n, this approach would require O(n2.5) storage versus O(n2) for the USFFT version.

It is possible, however, to downsample the naive grid, and obtain for each scale and angle a subgrid
which has the same cardinality as that in use in the USFFT implementation. The idea is to
periodize the frequency samples as we now explain.

As before, we let Pj,` be a parallelogram containing the support of the discrete localizing window
Ũj,`[n1, n2]. We suppose that at each scale j, there exist two constants L1,j ∼ 2j and L2,j ∼ 2j/2

such that, for every orientation θ`, one can tile the two-dimensional plane with translates of Pj,` by
multiples of L1,j in the horizontal direction and L2,j in the vertical direction. The corresponding
periodization of the windowed data d[n1, n2] = Ũj,`[n1, n2]f̂ [n1, n2] reads

Wd[n1, n2] =
∑

m1∈Z

∑
m2∈Z

d[n1 +m1L1,j , n2 +m2L2,j ]

The wrapped windowed data, around the origin, is then defined as the restriction of Wd[n1, n2] to
indices n1, n2 inside a rectangle with sides of length L1,j × L2,j near the origin:

0 ≤ n1 < L1,j , 0 ≤ n2 < L2,j .

Given indices (n1, n2) originally inside Pj,` (possibly much larger than L1,j , L2,j), the correspon-
dence between the wrapped and the original indices is one-to-one. Hence, the wrapping transforma-
tion is a simple reindexing of the data. It is possible to express the wrapping of the array d[n1, n2]
around the origin even more simply by using the “modulo” function:

Wd[n1 mod L1,j , n2 mod L2,j ] = d[n1, n2], (3.12)

with (n1, n2) ∈ Pj,`. Intuitively, the modulo operation maps the original (n1, n2) into their new
position near the origin.

For those angles in the range θ ∈ (π/4, 3π/4), the wrapping is similar, after exchanging the role of
the coordinate axes. This is the situation shown in figure 3.

Equipped with this definition, the architecture of the FDCT via wrapping is as follows:
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ω2

ω1

L1,j

L2,j

Figure 3: Wrapping data, intially inside a parallelogram, into a rectangle by periodicity. The angle
θ is here in the range (π/4, 3π/4). The black parallelogram is the tile Pj,` which contains the
frequency support of the curvelet, whereas the gray parallelograms are the replicas resulting from
periodization. The rectangle is centered at the origin. The wrapped ellipse appears “broken into
pieces” but as we shall see, this is not an issue in the periodic rectangle, where the opposite edges
are identified.

1. Apply the 2D FFT and obtain Fourier samples f̂ [n1, n2], −n/2 ≤ n1, n2 < n/2.

2. For each scale j and angle `, form the product Ũj,`[n1, n2]f̂ [n1, n2].

3. Wrap this product around the origin and obtain

f̃j,`[n1, n2] = W (Ũj,`f̂)[n1, n2],

where the range for n1 and n2 is now 0 ≤ n1 < L1,j and 0 ≤ n2 < L2,j (for θ in the range
(−π/4, π/4)).

4. Apply the inverse 2D FFT to each f̃j,`, hence collecting the discrete coefficients cD(j, `, k).

It is clear that this algorithm has computational complexity O(n2 log n) and in practice, its com-
putational cost does not exceed that of 6 to 10 two-dimensional FFTs, see Section 8 for typical
values of CPU times. In Section 6, we will detail some of the properties of this transform, namely,
(1) it is an isometry, hence the inverse transform can simply be computed as the adjoint, and (2)
it is faithful to the continuous transform.

3.4 FDCT Architecture

We finally close this section by listing those elements which are common to to both implementations
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1. Frequency space is divided into dyadic annuli based on concentric squares.

2. Each annulus is subdivided into trapezoidal regions.

3. In the USFFT version, the discrete Fourier transform, viewed as a trigonometric polynomial,
is sampled within each parallelepipedal region according an equispaced grid aligned with the
axes of the parallelogram. Hence, there is a different sampling grid for each scale/orientation
combination. The wrapping version, instead of interpolation, uses periodization to localize
the Fourier samples in a rectangular region in which the IFFT can be applied. For a given
scale, this corresponds only to two Cartesian sampling grids, one for all angles in the east-west
quadrants, and one for the north-south quadrants.

4. Both forward transforms are specified in closed form, and are invertible (with inverse in closed
form for the wrapping version).

5. The design of appropriate digital curvelets at the finest scale, or outermost dyadic corona, is
not straightforward because of boundary/periodicity issues. Possible solutions at the finest
scale are discussed in Section 7.

6. The transforms are cache-aware: all component steps involve processing n items in the ar-
ray in sequence, e.g., there is frequent use of 1D FFTs to compute n intermediate results
simultaneously.

They are other similarities such as similar running time complexities that shall be discussed in later
sections.

4 FDCT via USFFTs

4.1 Interpolation

As explained earlier, we need to evaluate the DFT of f [t1, t2] on the irregular grid (n1, n2−n1 tan θ`)
where the parameters range as follows: (n1, n2) ∈ Pj and ` indexes all the angles θ` ∈ (−π/4, π/4),
say; Figure 4 shows the structure of this grid at a fixed scale and for orientations in the “east”
quadrant. Fix n1 or equivalently ω1 = 2πn1, and consider the restriction g of the trigonometric
polynomial F (3.8) to this (vertical) line; g is a 1-dimensional trigonometric polynomial of degree
n which we express as

g(ω) =
∑

−n/2≤u<n/2

cu e
−iuω/n, (4.1)

with cu =
∑

t1
f [t1, u]e−iω1t1/n. Now, (3.10) asks to evaluate g on the family of meshes (ω`

m)

ω`
m = 2π · (m+ n1 tan θ`), m = −L2,j/2,−L2,j/2 + 1, . . . , L2,j/2− 1

(L2,j is the width of Pj). For each `, the mesh (ω`
m) with running point indexed by m is a regularly

spaced grid, and there are as many meshes as discrete angles. This family of interleaved meshes is
shown in Figure 5.
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Figure 4: This figure illustrates the sampling within each parallelepipedal region according to an
equispaced grid aligned with the axes of the parallelogram. There as many parallelograms as they
are angles θ` ∈ [−π/4, π/4).

Figure 5: This figure illustrates a key property of the USFFT version. The interpolation step is
organized so that it is obtained by solving a sequence of one-dimensional problems. For a fixed
column, we need to resample a one-dimensional trigonometric polynomial on the mesh shown here.
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The problem of evaluating the sum g(ω) (4.1) on the irregular grid is equivalent to that of resampling
the polynomial g, which is known on the regular Nyquist grid 2πn2, −n/2 ≤ n2 < n/2 by means
of trigonometric interpolation

g(ω) =
∑

−n/2≤n2<n/2

D

(
ω − 2πn2

n

)
g(2πn2),

where D is the Dirichlet kernel
D(ω) =

sin(nω/2)
n sin(ω/2)

. (4.2)

For each `, it is well known that one can evaluate all the sampled values g(ω`
m) using two 1D FFTs

of length n. We omit the standard details.

We would like to emphasize that viewing f̂ [n1, n2 − n1 tan θ`] as samples from the trigonometric
polynomial (3.8) imposes trigonometric interpolation of the Fourier samples f̂ [n1, n2]. Naturally,
one might employ other models which would lead to other interpolation schemes.

It is possible to compute (4.1) on the irregular grid by using as many one-dimensional FFTs as
there are distinct angles. Since the curvelet pyramid exhibits about

√
n orientations at fine scales,

the complexity of column interpolation would be at most of the order O(n3/2 log n). Clearly, the
interpolation step is computationally the most expensive component of the digital transform (see
Section 3); because each column is only touched at most twice, the algorithm just described would
take O(n5/2 log n) for exact computation for an image of size n by n. However, the algorithm can
also be implemented in an approximate manner in O(n2 log n) flops. For practical purposes, this
approximation is exact.

The reason for the speed-up is that the fast approximate transform is applied using the 1-dimensional
USFFT (unequally spaced fast Fourier transform). This step is organized so that many related sam-
pling problems, i.e., problems for unrelated meshes, are done simultaneously. In effect, the USFFT
rapidly computes all the irregularly spaced samples we need with high accuracy. We postpone the
presentation of this algorithm to Section 5.

4.2 Riesz Representers and the Dual Grid

How do digital curvelets look like? To answer this question, let SD
θ be the digital shear shifting

each column of f̂ as in (3.10), namely,

(SD
θ f̂)[n1, n2] = f̂ [n1, n2 − n1 tan θ], (n1, n2) ∈ Pj .

Now define ϕ̂D
j,0,k by

ϕ̂D
j,0,k[n1, n2] = Ũj [n1, n2] e−i2π(k1n1/L1,j+k2n2/L2,j). (4.3)

With these notations, we have

cD(j, `, k) = 〈SD
θ`
f̂ , ϕ̂D

j,0,k〉 = 〈f̂ , (SD
θ`

)∗ϕ̂D
j,0,k〉.
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In other words and for θ` = 0, ϕ̂D
j,0,k is the frequency domain definition of our digital curvelets

since cD(j, 0, k) = 〈SD
θ`
f̂ , ϕ̂D

j,0,k〉. In addition, for arbitrary angles, the discrete Fourier transform of
a digital curvelet is given by the expression

ϕ̂D
j,`,k = (SD

θ`
)∗ϕ̂D

j,0,k,

and therefore ϕ̂D
j,`,k is obtained from the reference ϕ̂D

j,0,k by a digital shear. We elaborate on this
point and argue that the digital shear nearly acts like an exact resampling operation since

ϕ̂D
j,`,k[n1, n2] ≈ ϕ̂D

j,0,k[S
−1
θ`

(n1, n2)] (4.4)

where the shear operator is as before, and where ≈ means that both sides are equal to within high
accuracy. This last relation says that at a given scale, curvelets at arbitrary angles are basically
obtained by shearing corresponding horizontal and vertical elements.

To justify (4.4), recall that SD
θ is a sequence of 1-dimensional trigonometric interpolation shifting

each column by τ = n1 tan θ (n1 is fixed). For convenience, let Lτ be the one-dimensional shift
operator acting on vectors of size n, h = Lτf , and represented by the convolution

h(t) =
∑

−n/2≤t′<n/2

D

(
2π
n

(t− τ − t′)
)
f(t′),

where D is the Dirichlet kernel (4.2). The interpolation is of course exact on trigonometric expo-
nentials, i.e., (Lτf)(t) = f(t− τ) for f(t) = ei2πut/n, −n/2 ≤ u < n/2. The same property applies
to its adjoint since L∗τ is the same operator—only shifting by −τ , instead.

To see how the interpolation acts on ϕ̂D
j,0,k, we recall the definition of the basic window Ũj [n1, n2] =

ψj(2πn1)Vj(n2/n1) as in (3.4). For a fixed column n1, we will argue that

LτVj(n2/n1) ≈ Vj((n2 − τ)/n1). (4.5)

To see why this is true, observe that for a fixed scale j and abscissa n1, Vj(n2/n1) are sampled
values of the function Vα(t) = V (αt) on the grid n2/n ∈ [−1/2, 1/2] with α = 2bj/2cn/n1. Now,
one can approximate Vα by means of its Fourier series

Vα(t) ≈
n/2−1∑

u=−n/2

V̂α(u) ei2πut,

where V̂α(u) are the Fourier coefficients of the continuous time function Vα. The near-equality
derives from the fact that for α substantially smaller than n, Vα is a smooth window with many
derivatives, and is consequently well approximated by its Fourier series. Now because Lτ is exact
on complex exponentials,

(LτVj [n1, ·])(n2) ≈
n/2−1∑

u=−n/2

V̂α(u)ei
2πu(n2−τ)

n ≈ Vj((n2 − τ)/n1).

as claimed. Therefore, letting ϕ̂D
j,0,k be the basic curvelet as in (4.3),

ϕ̂D
j,0,k[n1, n2] = ψj(2πn1)Vj(n2/n1) e

−i
2πk1n1

L1,j e
−i

2πk2n2
L2,j ,
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and assuming that L2,j divides n, we proved that for each column

(Lτ ϕ̂
D
j,0,k[n1, ·])(n2) ≈ ψj(2πn1)Vj((n2 − τ)/n1) e

−i
2πk1n1

L1,j e
−i

2πk2(n2−τ)
L2,j

= ϕ̂D
j,0,k[n1, n2 − τ ].

In conclusion, L∗n1 tan θϕ̂
D
j,0,k[n1, n2] ≈ ϕ̃jk[n1, n2 + n1 tan θ]; that is (4.4).

We have just seen that we were entitled to think about curvelets at scale 2−j and orientation θ` as
elements of the form

ϕ̂D
j,`,k[n] ≈ Ũj [S−1

θ`
n]ei〈S

−T
θ`

bD,n〉
, bD = (2πk1/L1,j , 2πk2/L2,j).

Let ϕD
j [t1, t2], −n/2 ≤ t1, t2 < n/2, be the inverse discrete Fourier transform of Ũj [n1, n2]. Then

ϕD
j,`,k[t] ≈ ϕD

j [ST
θ`

(t− S−T
θ`
bD)].

In other words, all the digital curvelets sharing that orientation and scale have support tiling the
space according to a dual tilted lattice. In summary, at a given scale, all digital curvelets are
essentially obtained by shearing and translating a single reference element.

4.3 The Adjoint Transformation

Each step of the curvelet transform via USFFT has an evident adjoint, and the overall adjoint
transformation is computed by taking the adjoint of each step and applying them in reverse order.

1. For each pair (j, `), apply the 2D FFT to the array cD(j, `; k) (j and ` are fixed) and obtain
Fourier samples g̃j,`[n1, n2], n1, n2 ∈ Pj .

2. For each pair (j, `), form the product g̃j,`[n1, n2]Ũj [n1, n2].

3. For each pair (j, `), view the product g̃j,`[n1, n2]Ũj [n1, n2] as samples on the sheared grid
(n1, n2 − n1 tan θ`), and use trigonometric interpolation to resample this function on the
standard Nyquist grid. Sum the contributions from all different scales and angles, and obtain
ĝ[n1, n2].

4. Apply the 2D IFFT and obtain the Cartesian array g[t1, t2].

Clearly, the adjoint transformation shares all the basic properties of the forward transform. In
particular, the cost of applying the adjoint is O(n2 log n), with n2 the number of pixels.

4.4 The Inverse Transformation

The transformation is invertible. Looking at the flow of the algorithm (Section 3), we see that the
first and the last step are easily invertible by means of FFTs. We use conjugate gradients to invert
the combination of step 2 and 3 (which in practice is applied scale by scale). Each CG iteration is
implemented via a series of 1D processes which, thanks to the special structure of the Gram matrix,
can be accelerated as we will see in the next section. In practice, 20 CG iterations (at each scale)
give about 5 digit accuracy. The practical cost of this approximate inverse is about ten times that
of the forward transform, see Section 8 for actual CPU times.
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5 Unequispaced Fast Fourier Transforms

Suppose we are given a vector (f [t])−n/2≤t<n/2 of size n, and a set of points (ωk), 1 ≤ k ≤ m. We
wish to evaluate the Fourier transform of the vector f at each point ωk

y[k] = F (ωk) =
n/2∑

t=−n/2

f [t] e−iωkt. (5.1)

A closely related problem of interest as well is the evaluation of the adjoint transform which takes
the form

g[t] =
m∑

k=1

y[k] eiωkt, (5.2)

with t still in the range t ∈ {−n/2,−n/2+1, . . . , n/2−1}. For arbitrary nodes ωk, direct evaluation
of (5.1) takes O(mn) operations which is often too much for practical purposes. For equispaced
nodes on the Nyquist grid ωk = 2πk/n, the values can be computed via the FFT in O(n log n).
However, in many applications, data are irregularly sampled or do not require sampling on an
equispaced grid which seriously limits the applicability of the FFT. Application fields such as
geophysics, geography, or astronomy all come to mind. As a consequence, it is critical to develop
rapid and accurate algorithms that would evaluate sums such as (5.1). In the last decade or so,
this problem received a large amount of attention.

Perhaps the most important references on this subject date back to the work of Dutt and Rokhlin
[22] and Beylkin [3]. The basic idea is best explained when considering (5.2). First express the
function g(t) as the Fourier transform of the spike series

P (ω) =
m∑

k=1

y[k] δ(ω − ωk).

The strategy is then to convolve P (ω) with a short filter H(ω) to make it approximately band-
limited, sample the result on a regular grid and apply the FFT, and deconvolve the output to
correct for the convolution with H(ω). This idea is further refined in [21] where the authors also
report on error estimates.

5.1 The Algorithm

In this paper, we develop a different strategy for computing (5.1). Our approach is essentially the
same as that of Anderson and Dahleh [1]. The idea is to compute intermediate Fourier samples on
a finer grid and use Taylor approximations to compute approximate values of F (ωk) at each node
ωk. The algorithm operates as follows:

1. Pad the vector f with zeros and create the vector (fD[t]) of size Dn with index t obeying
−Dn/2 ≤ t < Dn/2

fD[t] =

{
f [t] −n/2 ≤ t < n/2,
0 otherwise.

This is schematically illustrated in Figure 6.
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Figure 6: Zero-padding

2. Make L copies of fD and multiply each copy by (−it)` obtaining

fD,`[t] = (−it)`fD[t], ` = 0, 1, . . . , L− 1.

3. Take the FFT of each fD,`, and thereby obtain the values of F together with those of F ` on
the finer grid with spacing 2π/nD, namely,

F (`)

(
2πk
nD

)
In short, the (L− 1)-th order Taylor polynomial at each point on the finer grid is known.

4. Given an arbitrary point ω, evaluate an approximation to F (ω) by

F (ω) ≈ P (ω0) := F (ω0) + F ′(ω0)(ω − ω0) + . . . F (L−1)(ω0)
(ω − ω0)L−1

(L− 1)!
,

where ω0 is the closest fine grid point to ω.

What is the cost of this algorithm? We need to compute L FFTs of length Dn followed by m
evaluations of the Taylor polynomial. The complexity is therefore of O(n log n+m).

5.2 Error Analysis

What is the accuracy of this algorithm? Obviously, the error obeys

‖F (ω)− P (ω0)‖ ≤ ‖FL‖∞ · |ω − ω0|L

L!
, ‖FL‖∞ = sup

[−π,π]
|F (L)(ω)|.

Now F is a trigonometric polynomial of degree n (with frequencies ranging from −n/2 to n/2) and
obeys the Bernstein inequality [42] which states that

‖F (L)‖∞ ≤ (n/2)L‖F‖∞.

Since by definition, the nearest point on the finer lattice obeys |ω − ω0| ≤ π/nD, we have that for
all ω ∈ [−π, π) the relative error is bounded by

|F (ω)− P (ω0)|
‖F‖∞

≤
( π

2D

)L
· 1
L!
. (5.3)

Table 1 below presents some numerical values of the upper bound in (5.3) for typical values of
the oversampling factor D and of the number of derivatives. As one can see, we get quite a few
number of digits of accuracy with relatively small values of both D and L; e.g., L = 6 and D = 16
guarantees 9 digits.
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L = 4 L = 6
D = 8 6.19(-5) 7.96(-8)
D = 16 3.87(-6) 1.24(-9)

Table 1: Numerical values for the relative error (5.3).

5.3 The Adjoint USFFT

Suppose now that we are interested in computing the adjoint transformation (5.2). A possible
strategy is to take the adjoint of each step of the forward algorithm and apply them in reverse
order. Equivalently, observe that

eiωt = eiω0tei(ω−ω0)t ≈ eiω0t
L−1∑
`=0

[it(ω − ω0)]`

`!
,

where ω0 is again the closest point to ω on the finer grid. This suggests the following strategy for
computing (5.2):

1. For each point ω0 on the finer lattice, compute

Z`(ω0) =
∑

ωk∈N (ω0)

(ωk − ω0)`yk,

where ωk ∈ N (ω0) if and only if ω0 is the nearest neighbor to ωk.

2. Take the inverse Fourier transform of each vector Z` and obtain L vectors (GD,`[t]) with
−Dn/2 ≤ t < Dn/2.

3. Evaluate

GD[t] =
L−1∑
`=0

(it)`

`!
GD,`[t].

4. Finally, extract g on the subdomain of interest, namely, −n/2 ≤ t < n/2.

Clearly, the complexity and error estimates developed for the forward algorithm apply here as well.

5.4 The Gram Matrix

The inverse mapping from an equispaced sampling to an unequally spaced sampling does not have
an analytical inverse, and one could think about applying preconditioned Conjugate Gradients or
other iterative algorithms to go in the other direction. Let A be the unequally spaced Fourier
transform (5.1) and A∗ its adjoint (5.2). Many iterative algorithms—e.g., Conjugate Gradients—
would actually require applying A∗A to an arbitrary vector a repeated number of times. As is

22



well known, the linear transformation A∗A exhibits a Toeplitz structure which is here particularly
useful. Set g = A∗Af or

g[t] =
n/2−1∑

t′=−n/2

m∑
k=1

eiωk(t−t′) f [t′] =
n/2−1∑

t′=−n/2

c[t− t′] f [t′], (5.4)

where

c[u] =
m∑

k=1

eiωku, i.e., c = A∗(1, 1, . . . , 1).

The advantage is that we can apply a Toeplitz matrix to a vector of length n using essentially 2
FFTs of length 2n. The idea is to embed the Toeplitz in a larger circulant matrix of size 2n − 1
which can then be applied efficiently by means of the FFT [40, 13].

6 FDCT via Frequency Wrapping

6.1 Riesz Representers

The naive technique suggested in Section 3 to obtain oversampled curvelet coefficients consists of
a simple 2D inverse FFT, which reads

cD,O(j, `, k) =
1
n2

∑
n1,n2∈Rj,`

f̂ [n1, n2]Ũj,`[n1, n2]e2πi(k1n1/R1,j+k2n2/R2,j). (6.1)

The superscripts D,O stand for Digital, Oversampled. As before, Rj,` is a rectangle of size R1,j ×
R2,j , aligned with the Cartesian axes, and containing the parallelogram Pj,`. Assume that R1,j ,
R2,j divide the image size n. Then it is not hard to see that the coefficients cD,O(j, `, k) come from
the discrete convolution of a curvelet with the signal f(t1, t2), downsampled regularly in the sense
that one selects only one out of every n/R1,j × n/R2,j pixel.

In general the dimensions R1,j , R2,j of the rectangle are too large, as explained earlier. Equivalently,
one wishes to downsample the convolution further. The idea of the wrapping approach is to replace
R1,j and R2,j in equation (6.1) by L1,j and L2,j , the original dimensions of the parallelogram Pj,`. In
order to fit Pj,` into a rectangle with the same dimensions, we need to copy the data by periodicity,
or wrap-around, as illustrated in Figure 3. This is just a relabeling of the frequency samples, of
the form

n′1 = n1 +m1L1,j , n′2 = n2 +m2L2,j ,

for some adequate integers m1 and m2 themselves depending on n1 and n2.

The 2D inverse FFT of the wrapped array therefore reads

cD(j, `, k) =
1
n2

L1,j−1∑
n1=0

L2,j−1∑
n2=0

W (Ũj,`f̂)[n1, n2]e2πi(k1n1/L1,j+k2n2/L2,j). (6.2)
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Notice that the wrapping relabeling leaves the phase factors unchanged in the above formula, so
we can also write it as3

cD(j, `, k) =
1
n2

n/2−1∑
n1=−n/2

n/2−1∑
n2=−n/2

Ũj,`[n1, n2]f̂ [n1, n2]e2πi(k1n1/L1,j+k2n2/L2,j).

It is then easy to conclude that we have correctly downsampled the convolution of f with the
discrete curvelet, this time at every other n/L1,j×n/L2,j pixels. The following statement establishes
precisely this fact, i.e., that the curvelet transform computed by wrapping is as geometrically faithful
to the continuous transform as the sampling on the grid allows.

Proposition 6.1. Let ϕD
j,` be the “mother curvelet” at scale j and angle `,

ϕD
j,`(x) =

1
(2π)2

∫
ei〈x,ω〉Ũj,`(ω) dω,

and ϕ]
j,` denote its periodization over the unit square [0, 1]2,

ϕ]
j,`(x1, x2) =

∑
m1∈Z

∑
m2∈Z

ϕD
j,`(x1 +m1, x2 +m2).

In exact arithmetic, the coefficients in the East and West quadrants are given by

cD(j, `, k) =
1
n2

n−1∑
t1=0

n−1∑
t2=0

f [t1, t2]ϕ
]
j,`(

t1
n
− k1

L1,j
,
t2
n
− k2

L2,j
). (6.3)

This is a discrete circular convolution if and only if L1,j and L2,j both divide n. For angles in the
North and South quadrants, reverse the roles of L1,j and L2,j.

Proof. See appendix 10.

Notice that the actual value of xµ, the center of ϕµ(x) in physical space, is implicit in formula (6.3).
If ϕµ is centered at the origin when k1 = k2 = 0, then

xµ = (
k1

L1,j
,
k2

L2,j
)

when the angle is −π/4 ≤ θ` < π/4, and

xµ = (
k1

L2,j
,
k2

L1,j
)

for angles π/4 ≤ θ` < 3π/4.
3The leading factor 1

n2 is not the standard one for the inverse FFT (that would be 1
L1,jL2,j

), but this choice of

normalization is useful in the formulation of proposition 6.1. Yet another choice of normalization will be made later
to make the transform an isometry.
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6.2 Isometry and Inversion

In practice the curvelet coefficients are normalized as follows,

cD,N (j, `, k) =
n√

L1,jL2,j

cD(j, `, k),

where L1,j , L2,j are the sidelengths of the parallelogram Pj,`. Equipped with this normalization,
we have the Plancherel relation ∑

t1,t2

|f [t1, t2]|2 =
∑
j,`,k

|cD,N (j, `, k)|2.

This is easily proved by noticing that every step of the transform is isometric.

• The discrete Fourier transform, properly normalized,

f [t1, t2] →
1
n
f̂ [n1, n2]

is an isometry (and unitary).

• The decomposition into different scale-angle subbands,

f̂ [n1, n2] → {Ũj,`[n1, n2]f̂ [n1, n2]}j,`

is an isometry because the windows Ũj,` are constructed to obey
∑J

j=0

∑
` Ũj,`(ω)2 = 1.

• The wrapping transformation is only a relabeling of the frequency samples, thereby, preserving
`2 norms.

• The local inverse Fourier transform (6.2) is an isometry when properly normalized by 1√
L1,jL2,j

.

Owing to this isometry property, the inverse curvelet transform is simply computed as the adjoint
of the forward transform. Adjoints can typically be computed by “reversing” all the operations of
the direct transform. In our case,

1. For each scale/angle pair (j, `), perform a (properly normalized) 2D FFT of each array
cD,N (j, `, k), and obtain W (Ũj,`f̂)[n1, n2].

2. For each scale/angle pair (j, `), multiply the array W (Ũj,`f̂)[n1, n2] by the corresponding
wrapped curvelet W (Ũj,`)[n1, n2] which gives

W (|Ũj,`|2f̂)[n1, n2].

3. Unwrap each array W (|Ũj,`|2f̂)[n1, n2] on the frequency grid and add them all together. This
recovers f̂ [n1, n2].

4. Finally, take a 2D inverse FFT to get f [t1, t2].

In the wrapping approach, both the forward and inverse transform are computed in O(n2 log n)
operations, and require O(n2) storage.
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7 Extensions

7.1 Curvelets at the Finest Scale

The design of appropriate basis functions at the finest scale, or outermost dyadic corona, is not as
straightforward for directional transforms like curvelets as it is for 1D or 2D tensor-based wavelets.
This is a sampling issue. If a fine-scale curvelet is sampled too coarsely, the pixelization will
make it look like a checkerboard and it will not be clear in which direction it oscillates anymore.
In the frequency domain, the wedge-shaped support does not fit in the fundamental cell and its
periodization introduces energy at unwanted angles.

The problem can be solved by assigning wavelets to the finest level. When j = J , the unique
sampled window ŨJ [n1, n2] is so constructed that its square forms a partition of unity, together
with the curvelet windows. A full 2D inverse FFT can then be performed to obtain the wavelet
coefficients. This highpass filtering is very simple but goes against the philosophy of directional
basis elements at fine scale. Wavelets at the finest scale are illustrated in Figure 11 (top row).

In this section, we present the next simplest solution to the design of faithful curvelets at the
finest scale. For simplicity let us adopt the sampling scheme of the wrapping implementation, but
a parallel discussion can be made for the USFFT-based transform. As above, denote by J the
finest level. By construction, the standard curvelet window Ũj,`[n1, n2] is obtained by sampling a
continuous profile Ũj,`(ω1, ω2) at ω1 = 2πn1, ω2 = 2πn2. When j = J , the profile Ũj,` overlaps the
border of the fundamental cell but can still be sampled according to the formula

ŨJ,`[(n1 +
n

2
) mod n− n

2
, (n2 +

n

2
) mod n− n

2
] = ŨJ,`(2πn1, 2πn2). (7.1)

The indices n1, n2 are still chosen such that ŨJ,` is evaluated on its support. The latter is by
construction sufficiently small so that no confusion occurs when taking modulos. In effect we have
just copied ŨJ,` by periodicity inside the fundamental cell. The windows ŨJ,`(ω1, ω2) must be
chosen adequately so that the discrete arrays ŨJ,`[n1, n2], now with n1, n2 = −n/2 . . . n/2−1, obey
the isometry property together with the other windows,

J∑
j=0

∑
`

|Ũj,`[n1, n2]|2 = 1.

In fact, this is the case if ŨJ,` is chosen as in Section 3 (after an appropriate rescaling).

Periodization in frequency amounts to sampling in space, so finest-scale curvelets are just under-
sampled standard curvelets. This is illustrated in Figure 11 (middle row). What do we loose in
terms of aliasing? Spilling over by periodicity is inevitable, but here the aliased tail consists of
essentially only one-third of the frequency support. Observe in Figure 11 (middle right) that a
large fraction of the energy of the discrete curvelet still lies within the fundamental cell. Numer-
ically, the non-aliased part amounts to about 92.4% of the total squared `2 norm ‖ϕD

j,`,k‖2
`2 . The

“checkerboard” look of undersampled curvelets, mentioned above, is shown in Figure 11 (bottom
right).

Accordingly, the definition of wrapping of an array d[n1, n2], in the presence of undersampled
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curvelets, is modified to read:

Wd[n1 mod L1,j , n2 mod L2,j ] = d[(n1 +
n

2
) mod n− n

2
, (n2 +

n

2
) mod n− n

2
] (7.2)

The new modulo that appears in the above equation (compare with (3.12)) prevents data queries
outside [0, n]2, which would otherwise happen if equation (3.12) were used naively. Instead, data is
folded back by periodicity onto the fundamental cell, ultimately resulting in aliased basis functions.

The definitions of forward and inverse curvelet transforms, as well as their properties, otherwise
go unchanged. Proposition 6.1 and its proof do not have to be changed either: they are already
compatible with equation (7.2).

7.2 Windows over Junctions between Quadrants

The construction of windows Ũj,` explained in Section 3.1 make up an orthonormal partitioning
of unity as long as the window is supported near wedges that do not touch neither of the two
diagonals. There are 8 “corner” wedges per scale calling for a special treatment, and corresponding
to angles near ±π/4 and ±3π/4, see Figure 7 on the left. In these exceptional cases, creating a
partition of unity is not as straightforward. This is the topic of this section.

It is best to follow Figure 7 while reading this paragraph. Consider a trapezoid in the top quadrant
and corresponding to an angle near 3π/4 as in the figure. The grey trapezoid is the corner wedge
near which the curvelet is supported, but the actual support of the curvelet is the nonconvex
hexagon bounded by the dash-dotted line. As before, the corner curvelet window is given as a
product of the radial window Wj and of the angular window Vj,`,

ϕ̂D
j,`(ω) = Wj(ω)Vj,`(ω).

We decompose the corner window Vj,` into a left-half and a right-half. The right-half is given by
the standard construction presented earlier. It is a function of ω1

ω2
. The left-half of the window is

constructed as a member of a square-root of a partition of unity designed in a frame rotated by
45 degrees with respect to the Cartesian axes. The left-half of the window is a function of ω1+ω2

ω1−ω2
.

The left and right-halves agree on the line where they are stitched together (on the figure, it is
the tilted line, first to the right of the diagonal ω1 = −ω2). Along the border line, they are both
equal to one and they have at least a couple of vanishing derivatives in all directions. Again, the
partition of unity can be designed so that all these derivatives are zero. By construction, our set
of windows obeys the partition of unity property, equation (3.2).

7.3 Other Frequency Tilings

The construction of curvelets is based on a polar dyadic-parabolic partition of the frequency plane,
also called FIO tiling, as explained in Section 2. However, the approach is flexible, and can be
used with a variety of choices of parallelepipedal tilings, for example, including based on principles
besides parabolic scaling. For example:

• A directional wavelet transform is obtained if, instead of dividing each dyadic corona into
C · 2bj/2c angles, we divide it into a constant number, say 8 or 16 angles, regardless of scale

27



�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�


�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � 

!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"

#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#
#�#�#�#�#�#�#

$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$
$�$�$�$�$�$�$

%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%

&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&

'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'
'�'

(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(
(�(

)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)
)�)

*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*
*�*

+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+
+�+�+�+

,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,
,�,�,�,

-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-

.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.

/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/
/�/�/�/�/�/�/�/�/

0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0
0�0�0�0�0�0�0�0�0

1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1
1�1�1�1�1�1�1�1�1�1

2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2
2�2�2�2�2�2�2�2�2�2

3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3
3�3�3�3�3�3�3�3�3�3

4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4
4�4�4�4�4�4�4�4�4�4

5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5
5�5�5�5�5�5�5�5�5�5

6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6
6�6�6�6�6�6�6�6�6�6

7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7
7�7�7�7�7�7�7�7�7�7

8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8
8�8�8�8�8�8�8�8�8�8

9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9
9�9�9�9�9�9�9�9�9�9

:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:
:�:�:�:�:�:�:�:�:�:

;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;
;�;�;�;�;�;�;�;�;�;

<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<
<�<�<�<�<�<�<�<�<�<

=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=
=�=�=�=�=�=�=�=�=�=

>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>
>�>�>�>�>�>�>�>�>�>

?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?
?�?�?�?�?�?�?�?�?�?

@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@
@�@�@�@�@�@�@�@�@�@

ω

ω1

2 Left Right

Figure 7: Left: The corner wedges appear in grey. Right: Detail of the construction of a partition
of unity over the junction between quadrants.

as in [35]. This can be realized by dropping the requirement that wedges be split as scale
increases.

• A ridgelet transform is obtained by subdividing each dyadic corona into C · 2j angles. This
can be achieved by subdividing every angular wedge every time the scale index j increases
(not just every other time, as for curvelets.)

• A Gabor analysis is obtained if, instead of considering bandpass concentric annuli of thickness
increasing like a power of two, we consider the thickness to be the same for all annuli. In
other words, coronae with fixed width are substituted for dyadic coronae. The number of
wedges into which an annulus should be divided is proportional to its length, or equivalently,
its distance to the origin.

• More generally, one can create an adaptive partitioning of the frequency plane that best
matches the features of the analyzed image. This is the construction of ridgelet packets as
explained in [24]. A best basis strategy can then be overlaid on the packet construction to
find the optimal partitioning in the sense that it minimizes an additive measure of “entropy,”
or sparsity.

In all these cases both the USFFT and wrapping strategies carry over without essential modifica-
tions and yield tight or nearly tight frames. The design problem is reduced to the construction of
a smooth partition of unity that indicates the desired frequency tiling.

7.4 Higher Dimensions

Curvelets exist in any dimension [5]. In 3 dimensions for example, curvelets are little plates of side-
length about 2−j/2 in two directions and thickness about 2−j in the orthonormal direction. They
vary smoothly in the two long directions and oscillate in the short one (the 3D parabolic scaling
matrix is of the form diag(2−j/2, 2−j/2, 2−j)). Just as 2D curvelets provide optimally efficient repre-
sentations of 2D objects with singularities along smooth curves, 3D curvelets would provide efficient
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representations of 3D objects with singularities along smooth 2D surfaces, and more generally, of
objects with singularities along smooth manifolds of codimension 1 in higher dimensions.

The algorithms for 3D discrete curvelet transforms are similar to their 2D analogs. We first de-
compose the object into dyadic annuli based on concentric cubes. Each annulus is subdivided into
trapezoidal regions obeying the usual frequency parabolic scaling (one long and two short direc-
tions), see Figure 8. (Note that they are now 6 components corresponding to the 6 faces of the
cube.)

Figure 8: The dyadic-parabolic frequency tiling in 3D. Curvelets are supported near the gray
regions.

Both transforms carry over to 3 dimensions and we only rehearse the minor modifications.

1. The 3D FDCT via wrapping just wraps the 3D parallelepipeds instead of their 2D analogs.

2. In the 3D FDCT via USFFT, we need to resample f̂ [n1, n2, n3] on 2D planes which are
orthogonal to the coordinate axes. Fix a scale, and an abscissa n1 as before. The problem
is to evaluate f̂ on the 2D irregular grid (n1,m2 + n1 tan θ`2 ,m3 + n1 tan θ`3) where −L2,j ≤
m2,m3 < L2,j . Set c[u2, u3] =

∑
t1
f [t1, u2, u3]e−i2πn1t1/n. We need to sample

g(ω2, ω3) =
∑

−n/2≤u2,u3<n/2

c[u2, u3] e−i(u2ω2+u3ω3)/n, (7.3)

on the family of meshes (ω`2
m2
, ω`3

m3
) where ω`2

m2
:= 2π(m2 + n1 tan θ`2) and likewise for ω`3

m3
.

The key point is that one can compute (7.3) with about 2n one-dimensional USFFTs; first, one
applies the USFFT along the columns by holding u3 constant and thereby obtains the partial
sums

∑
−n/2≤u2<n/2 c[u2, u3] exp(−i(u2ω

`2
m2

+ u3ω
`3
m3

)/n) for all the ω`2
m2

; second, the values
of (7.3) on the grid of interest are obtained by applying the USFFT along the rows—holding
ω`2

m2
constant.

To summarize, the 3D FDCT via USFFT operates by applying a sequence of 1D USFFTs
and, therefore, the 3D FDCT never needs to hold large chunks of data in memory. For an n
by n by n Cartesian array, a simple operation count shows that the resampling of f̂ on the 2D
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grid (n1,m2 +n1 tan θ`2 ,m3 +n1 tan θ`3) can be implemented accurately in O(n2 log n) flops.
Since each 2D plane is touched at most twice, the 3D FDCT via USFFT runs in O(n3 log n)
flops.

3. The construction of junction windows (described in Section 7.2 for 2D FDCTs) is a little
more delicate since one needs to consider more cases. One possible solution is to develop a
partition of unity over the unit sphere which is then mapped onto the cube. The detailed
algorithm and numerical results of the 3D transform will be presented in a future report.

In short, 3D FDCTs follow exactly the same architecture as 2D FDCTs, and the forward, adjoint,
and inverse transforms all run in O(N logN) for Cartesian arrays of size N = n3 voxels.

7.5 Nonperiodic Image Boundaries

An (unfortunate) consequence of using the DFT to define our transform is that the image is
implicitly considered as a periodic array. The leftmost and rightmost pixels in a given row, or
the top and bottom pixels in a given column, are considered immediate neighbors as much as
ordinary adjacent pixels are. By construction, a substantial number of basis functions appear to
be supported on two (or more) very distant regions of the image, because they overlap the image
boundary and get copied by periodicity. Let us call them “boundary curvelets.”

Periodization may result in unwanted curvelet-looking artifacts near the image boundary, for ex-
ample in image denoising experiments. The reason for the presence of these artifacts, however, is
not the same for curvelets and for wavelets. In order to understand this phenomenon, we need to
sort curvelets according to their orientation.

1. Boundary curvelets that are aligned with a boundary edge mostly respond to the artificial dis-
continuity created by periodization. Since the basis elements very closely follow the boundary,
the visual effect of a big coefficient is minor.

2. Boundary curvelets misaligned with respect to the boundary edge are assigned big coefficients
when they respond to geometrical structure on the opposite side of the image, across the edge.
This causes the most severe visual artifacts.

In the remainder of this section, we present a few (somewhat naive) solutions to artifacts of type
2, when boundary curvelets are misaligned.

The most obvious remedy is to pad the image with zeros to make it twice larger in both directions.
The curvelet transform is then applied to the extended image, increasing the redundancy by a factor
4. The blank surrounding region is large enough to prevent boundary curvelets from wrapping
around. The inverse or adjoint transform would then would have an extra step, clipping off the
extra pixels.

If we postulate that artifacts of type 2 are caused by boundary curvelets forming an angle greater
than 45 degrees with the edge, then it is not necessary to zeropad in all directions. The image should
only be extended horizontally for mostly horizontal curvelets, and vertically for mostly vertical
curvelets. The zeropadding will make the image twice larger in only one direction, depending on
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Figure 9: At the coarsest level, curvelets are nondirectional and are Meyer scaling functions. (a)
Spatial-side. The color map is as follows: white is most negative, zero corresponds to some tone of
grey, and black is most positive. (b) Frequency-side (modulus of the Fourier transform). The level
of grey indicates values from zero (white) to one (black).

the orientation of the subband considered. In this case, the increase in redundancy is only of a
factor 2.

In principle it would be advantageous to make the width of the zeropadding not only angle-
dependent, but also scale-dependent. More precisely, the width of the padding does not have
to be bigger than a factor times the length of misaligned curvelets, i.e., C · 2−bj/2c. The gain in
redundancy would be obvious. There is a complication, however, in considering scale-dependent
or even angle-dependent paddings. Different subbands will correspond to different grids and extra
care will be needed to properly re-design the transform to make it an isometry. It will be necessary
to rethink the notion of discrete partition of unity to accommodate interpolation between different
grids.

We have not pursued this issue much further, but a better handling of image boundaries would
improve the current architecture of the curvelet transform for image processing applications.

8 Numerical Examples

We start this section by displaying a few curvelets in both the spatial and the frequency domain,
see Figures 9 (coarsest scale curvelets), 10 and 11 (curvelets at the finest level where one can choose
between wavelets and curvelets). Localization in both space and frequency is apparent. The digital
curvelets seem faithful to their continuous analog. In the spatial domain, they are smooth along
and oscillatory across the ridge. In the frequency domain, they are sharply localized.

Next, Tables 2 and 3 report the running time of both FDCTs on a sequence of arrays of increasing
size. TFwd, TInv and TAdj are running times of the forward, inverse and adjoint transforms respec-
tively (we only give TInv for the FDCT via wrapping since the inverse is the same as the adjoint).
The column TFwd/TFFT gives the ratio between the running time of the FDCT and that of the FFT
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Figure 10: Curvelets at increasingly fine scales. The left panels represent curvelets (real part) in
the spatial domain (as functions of the spatial variable x). The right panels show the modulus of
the Fourier transform (as functions of the frequency variable ω). The color map is the same as in
Figure 9.

on an array of the same size. The accuracy or `2-error is computed as ‖f − CInvCFwdf‖`2/‖f‖`2

where CInv and CFwd are the the forward and inverse FDCTs. The FDCT via wrapping achieves
machine accuracy because of the exact numerical tightness of the digital transform. The FDCT
via USFFT also achieves high accuracy, i.e., of the order of 10−6. Although both transforms have
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Figure 11: Wavelets and curvelets at the finest scale. Meyer wavelet in space (a) and frequency
(b). Undersampled curvelet in space (c) and frequency (d). (e) Zoom of (a). (f) Zoom of (c).

low running times, the USFFT transform is somewhat slower; this is due to the interpolation step
in the forward transform and to the CG iterations in the inverse transform.

We then illustrate the potential of FDCTs with several examples. The wrapping-based implementa-
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Image size TFwd(s) TInv(s) TFwd/TFFT `2 error
128× 128 0.040458 0.039520 11.2383 4.5450e-16
256× 256 0.174807 0.176519 8.8286 4.8230e-16
512× 512 0.829820 0.868141 6.0793 4.8908e-16

1024× 1024 4.394066 4.482452 7.7224 5.6303e-16
2048× 2048 20.01692 23.02144 7.7567 6.3018e-16

Table 2: Running time and error for the wrapping-based transform.

Image size TFwd(s) TAdj(s) TInv(s) TFwd/TFFT `2 error
128× 128 0.088832 0.091578 1.006522 24.6756 1.4430e-06
256× 256 0.376838 0.390533 4.002353 19.0322 8.8154e-07
512× 512 2.487052 2.579102 35.09599 18.2202 5.3195e-07

1024× 1024 16.47702 16.87764 129.3631 28.9579 3.2390e-07
2048× 2048 62.42980 65.09365 566.1732 24.1920 3.4305e-06

Table 3: Running time and error for the USFFT-based transform.

tion has been used for all experiments. In the first example, we compare the decay of the coefficients
of the curvelet and various wavelet representations on images with curve-like singularities. Our first
input image—shown in Figure 12 (a)—is singular along a smooth curve and is otherwise perfectly
smooth (this image is de-aliased to remove the artifacts due to pixelization). To compensate for
the redundancy of the curvelet transform and to display a meaningful comparison, we extract a
fraction of the entries of the curvelet coefficient table so that the number of curvelet and wavelet
coefficients is identical. The extracted curvelet entries are renormalized to preserve the overall `2

norm. Figure 12 (b) shows the values of the coefficients sorted in decreasing order of magnitude.
The faster the decay, the better. The sparsity analysis is complemented by the quantitative study
of partial reconstructions of f , where we have again used redundancy compensation as explained
above. Figure 12 (c) shows the PSNR of best m-term approximation,

PSNR = 20 log10

(
max(f(x))−min(f(x))

‖f − fm‖2

)
(dB)

where fm is the partial reconstruction of f using the m largest coefficients in magnitude, in the
curvelet (or wavelet) expansion (note that because of the redundancy of the FDCT, there are better
ways of obtaining partial reconstructions).

The second input image—shown in Figure 13 (a)—is a synthetic seismogram corresponding to
the acoustic response of a one-dimensional layered medium to a point source. The decay of the
coefficients and the partial reconstruction error for this image are shown in Figure 13 (b) and (c)
respectively. Our experiments suggest that FDCTs outperform, by a significant margin, traditional
wavelet representations on these types of image data. Synthetic seismic images seem to be the ideal
setting for curvelets because they are prepared as solutions to a wave equation in simple layered
media, with a bandlimited point excitation. The solution itself is therefore very close to being
bandlimited. We are in the setting of proposition 6.1: when the data are oscillatory yet properly
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sampled, curvelets are expected to be completely faithful to the continuous transform, explaining
the good denoising performance.
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Figure 12: Sparsity analysis of the curvelet and wavelet representations of a singular object. (a)
Input image. (b) Magnitude of the coefficients sorted in descending order. (c) PSNR for partial
reconstruction with the m largest coefficients in magnitude. The horizontal line at 40 dB indicates
a typical “visually acceptable” level of reconstruction.

The second example is denoising. The original image is the seismogram used in the previous example
(see Figure 13 (a)). The noise-to-signal ratio is set to 10%, which corresponds to PSNR = 20.0
dB. A denoising algorithm based on our curvelet transform results in an image with PSNR = 37.6
dB. (see Figure 14 (c)) while a traditional wavelet denosing algorithm (Symmlet 8 in WaveLab,
shift-invariant hard thresholding at 2.5σ) gives PSNR = 30.8 dB. (see Figure 14 (d)). The curvelet
denoising algorithm used above is a simple shift-invariant block-thresholding of the wrapping-based
curvelet transform (with curvelets at the finest scale) and is available as Matlab code in CurveLab.
(For an image of size 1024× 512, the whole procedure runs in less than 90 seconds on a standard
desktop.)
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Figure 13: Sparsity analysis of the curvelet and wavelet representations of a seismogram. (a)
Synthetic seismogram corresponding to the acoustic response of a one-dimensional layered medium
to a point source, courtesy of Eric Verschuur and Felix Herrmann. The x-axis is the offset from
the source and the y-axis is time. (b) Decay of the coefficients. (c) Partial reconstruction error,
measured in PSNR.

In the introduction section, we pointed out that curvelets were especially well adapted to simul-
taneously represent the solution operators to large classes of wave equations and the wavefields
that are solutions to those equations. In our third example, we consider the constant coefficient
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Figure 14: Image denoising using curvelets. (a) The Original image (zoom). (b) Noisy image
(Gaussian white noise with σ = 10% of the maximum intensity), PSNR = 20.0 dB. (c) Denoised
image using curvelets, PSNR = 37.6 dB. (d) Denoised image using wavelets, PSNR = 30.8 dB.

second-order wave equation with periodic boundary condition

utt −∆u = 0 x ∈ [0, 1)× [0, 1).

We discretize the domain with a 512-by-512 Cartesian grid, and take as initial wavefield a delta
function located at the center of the domain, see Figure 15 (a). The solution at a later time is
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known analytically, and may therefore be computed exactly. We use the FDCT to compress the
wavefield at time t = 0.25 and t = 0.75. Figures 15 (b) and (c) show the approximate wavefields
reconstructed from only 1.25% of the curvelet coefficients. In both cases, the relative `2 error is
about 10−5.

We have seen that the wavefield is well approximated by just a few curvelets and now study the
compressibility of the wave propagator Et. For simplicity, assume Et acts on scalar wavefields.
From a theoretical point of view, it is known that the entries of Et(µ, µ′) = 〈ϕµ, Etϕµ′〉 taken from
an arbitrary row (fixed µ) or column (fixed µ′) decay faster than any negative power law. Figure 15
(d) plots the decay of the matrix coefficients (sorted by decreasing magnitude) for several columns
of the propagator matrix Et at t = 0.75 while (e) plots the relative truncation error for those same
columns. “Scale” in the legend refers to the scale j′ corresponding to µ′, the index of the column.
Observe that for every column, we achieve a relative error of order 10−5 by using about 1% of the
largest curvelet coefficients. The data are shown as is; no compensation for redundandy has been
made in this experiment.

9 Discussion

The two transforms introduced in this paper were designed with the goal of being as faithful to
continuous curvelets as possible. In both cases the main step of the transform is to window the
data in frequency with prescribed windows, sampled on the same grid as the data. This sampling
in frequency is the only distortion that curvelets incur in the digital transforms. This issue is
inevitable but minor, since it is equivalent to periodization in space where curvelets decay fast.
Recall that the other potential source of error, spatial sampling, is a nonissue here since curvelets
are nearly bandlimited.

Both transforms are fast and the wrapping variant is to our knowledge the fastest curvelet transform
currently available. Computing a direct or inverse transform in C++ takes about the same time
as 6 to 10 FFTs using FFTW (available at http://www.fftw.org), which can hardly be improved
upon.

9.1 Open Problems

In addition to removing periodicity, the curvelet transform can be made more useful or attractive
in a number of ways and we discuss a few opportunities.

• Firstly, the redundancy of our transform is about 2.8 when wavelets are chosen at the finest
scale, and 7.2 otherwise. For certain image processing tasks, redundant transformations may
be of benefit, but for others, digital transforms with low redundancy might be more desirable.
It is not immediate how one could adapt our ideas to reduce the redundancy while keeping
the isometry property and remaining faithful to the continuous transform. In particular, it is
not known whether one can construct orthonormal bases of curvelets. We regard this problem
as very significant and extremely challenging.

• Secondly, compactly-supported (or at least exponentially-decaying) curvelets would have the
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Figure 15: Compression of the wavefield and of the solution operator to the wave equation with
periodic boundary conditions. (a) The initial condition is a delta function located at the center of
the domain. (b) Approximate solution at t = 0.25. (c) Approximate solution at t = 0.75. Both
approximations only use 1.25% of nonzero curvelet coefficients. (d) Magnitude of the matrix entries
(rearranged in descending order) of the solution operator Et at t = 0.75 taken from three columns
corresponding to three curvelets at various scales. (e) For the same three columns, truncation error
obtained by keeping the m largest entries, measured in PSNR.

potential to yield sparser expansions of images with geometrical regularity. We consider the
design of compactly-supported curvelet tight frames as another interesting open problem.

• Thirdly, although proposition 6.1 settles the accuracy question when data is bandlimited, it
remains to be studied how faithful the curvelet transform can be in the presence of aliased
data. Aliasing occurs when, for example, a function with a discontinuity is discretized by
pointwise evaluation. In image processing this typically happens in the neighborhood of an
edge. Yet not all hope is lost, because of geometric regularity along the edge. A complete
theory of approximation for curvelets (or wavelets for that matter) needs to solve this sampling
issue.
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9.2 Relationships with Other Works

The notion of directional multiscale transform originated independently in different fields in the
early nineties. Without the claim of being exhaustive, let us only mention continuous wavelet
theory [32] and steerable pyramids in the field of computer vision [35, 34]. The latter approach was
the first practical, data-friendly strategy to extract information at different scales and angles.

A more recent, very interesting attempt at implementing low-redundancy curvelets, was introduced
by Minh Do and Martin Vetterli, in [16]. The construction is based on a filterbank decomposition
of the image in both scale and angle. The resulting basis functions are called “contourlets,” and
form a tight frame with redundancy 4/3. The contourlet transform has a very fast O(n2 log n)
implementation as well, at least when contourlets are selected to be compactly supported. The
only problem with this construction is that it is not faithful to the idea of the curvelet transform
in the sense that for most choices of filters in the angular filterbank, contourlets are not sharply
localized in frequency. On the practical side, this means that contourlets lack smoothness along the
ridge in the spatial domain and exhibit spurious oscillations which may be of source of numerous
problems, especially if one wants to use these transforms for scientific computing. On the theoretical
side and to the best of our knowledge, contourlets do not allow to formulate as strong theorems in
approximation and operator theory as in [5, 10].

The idea of using concentric squares and shears is also central to the construction of tight frames
of “shearlets”, by Guo, Kutyniok, Labate, Lim, Weiss and Wilson in a recent series of papers
[28, 29, 30] starting with [28]. In these papers, they show how to built wavelets or multiwavelets from
composite dilations and translations. The architecture is similar to that of curvelets, except that
the tiling of the frequency plane induced by dilation and pure shearing has a preferred direction—
vertical or horizontal.

9.3 Possible Applications

Just as the wavelet transform has been deployed a countless number of times in many fields of science
and technology, we expect fast digital curvelet transforms to be widely applicable—especially in
the field of image processing and scientific computing.

In image analysis for example, the curvelet transform may be used for the compression of image
data, for the enhancement and restoration of images as acquired by many common data acquisition
devices (e.g., CT scanners), and for postprocessing applications such as extracting patterns from
large digital images, detecting features embedded in very noisy images, enhancing low contrast
images, or registering a series of images acquired with very different types of sensors.

Curvelet-based seismic imaging already is already a very active field of research, see for example the
recent papers [25, 27] as well as several expanded abstracts of Felix Herrmann and his collaborators,
currently available at http://slim.eos.ubc.ca/.

In scientific computing, curvelets may be used for speeding up fundamental computations; numerical
propagation of waves in inhomogeneous media is of special interest. Promising applications include
seismic migration and computational geophysics.
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10 Appendix

Proof of proposition 6.1. By definition, the East and West coefficients are given by the formula

cD(j, `, k) =
1
n2

L1,j−1∑
n1=0

L2,j−1∑
n2=0

e2πik1n1/L1,je2πik2n2/L2,jW (Ũj,`f̂)[n1, n2].

Let us change n1 and n2 to n′1 = n1 + m1L1,j , n′2 = n2 + m2L2,j , for appropriate integers m1,
m2 (themselves depending on n1 and n2) so that (2πn′1, 2πn

′
2) ∈ Pj,`, or more concisely, “n′1, n

′
2 in

tile.” This is the unwrapping transformation, and leaves the phase factors unchanged. Notice that
n1 = n′1 mod L1,j and n2 = n′2 mod L2,j . We can then use the definition of wrapping in equation
(3.12) to rewrite

cD(j, `, k) =
1
n2

∑
n1,n2 in tile

e2πik1n1/L1,je2πik2n2/L2,j Ũj,`[n1, n2] f̂ [n1, n2].

We recall that the index-to-sample correspondence in the frequency plane is just

Ũj,`[n1, n2] = Ũj,`(2πn1, 2πn2).

It is also valid for f̂ , if we introduce f̂(ω1, ω2) as the trigonometric interpolant of the array f̂ [n1, n2]
(3.8). Notice in passing that f̂(ω1, ω2) is periodic in ω outside of the fundamental cell, so we
actually have

f̂(2πn1, 2πn2) = f̂ [(n1 +
n

2
) mod n− n

2
, (n2 +

n

2
) mod n− n

2
] (10.1)

for every (n1, n2) ∈ Z2. With this convention the data f [t1, t2] itself can be viewed as samples
f( t1

n ,
t2
n ) of f , the inverse (continuous) Fourier transform of f̂ restricted to the fundamental cell.

Using this continuous representation of the data, along with equation (7.1) in the case when the
modulo is triggered in equation (10.1), cD(j, `, k) obeys

cD(j, `, k) =
1
n2

∑
n1,n2 in tile

ei2π(k1n1/L1,j+k2n2/L2,j) ϕ̂D
j,`(2πn1, 2πn2) f̂(2πn1, 2πn2)

and since ϕ̂j,` is compactly supported, one can extend the sum above to (n1, n2) ∈ Z2. Introduce
the Dirac comb

c(ω1, ω2) =
∑
n1∈Z

∑
n2∈Z

δ(ω1 − 2πn1)δ(ω2 − 2πn2).

and rewrite cD(j, `, k) as

cD(j, `, k) =
1
n2

∫
R2

e
iω1

k1
L1,j e

iω2
k2

L2,j c(ω)ϕ̂D
j,`(ω)f̂(ω) dω.

Our claim follows from Parseval’s identity which states that
∫
ûv̂ = (2π)2

∫
uv. Indeed, the inverse

Fourier transform of f̂ is given by

F−1(f̂(ω))(x) =
n−1∑
t1=0

n−1∑
t2=0

δ(x1 −
t1
n

)δ(x2 −
t2
n

)f [t1, t2],

41



while for the other

F−1(e
−iω1

k1
L1,j e

−iω2
k2

L2,j c(ω)ϕ̂D
j,`(ω))(x) =

1
(2π)2

ϕ]
j,`(x1 −

k1

L1,j
, x2 −

k2

L2,j
).

The Parseval formula then gives (6.3). For the North and South quadrants, the proof is identical
after swapping L1,j and L2,j .
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