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The Curvelet Transform for Image Denoising

Jean-Luc Starck, Emmanuel J. Candes, and David L. Donoho

Abstract—We describe approximate digital implementations of range of wavelet-based tools and ideas have been proposed
two new mathematical transforms, namely, the ridgelet transform  and studied. Initial efforts included very simple ideas like
[2] and the curvelet transform [6], [5]. Our implementations —,resholding of the orthogonal wavelet coefficients of the noisy

offer exact reconstruction, stability against perturbations, ease .
of implementation, and low computational complexity. A central data, followed by reconstruction. Later efforts found that sub-

tool is Fourier-domain computation of an approximate digital Stantial improvements in perceptual quality could be obtained
Radon transform. We introduce a very simple interpolation in by translation invariant methods based on thresholding of an
Fourier space which takes Cartesian samples and yields samplesyndecimated wavelet transform. More recently, “tree-based”

on a rectopolar grid, which is a pseudo-polar sampling set based 5y elet denoising methods were developed in the context of
on a concentric squares geometry. Despite the crudeness of our.

interpolation, the visual performance is surprisingly good. Our |mag-e-den0|smg, which exploit the tree.structure _Of Wave.let
ridgelet transform applies to the Radon transform a special Coefficients and the so-called parent—child correlations which
overcomplete wavelet pyramid whose wavelets have compactare present in wavelet coefficients of images with edges. Also,
support in the frequency domain. Our curvelet transform uses many investigators have experimented with variations on
our ridgelet transform as a component step, and implements e pasic schemes—modifications of thresholding functions,

curvelet subbands using a filter bank of a trous wavelet filters. - . .
Our philosophy throughout is that transforms should be over- level-dependent thresholding, block thresholding, adaptive

complete, rather than critically sampled. We apply these digital choice of threshold, Bayesian conditional expectation non-
transforms to the denoising of some standard images embeddedlinearities, and so on. Extensive efforts by a large number of

in white noise. In the tests reported here, simple thresholding researchers have produced a body of literature which exhibits

of the curvelet coefficients is very competitive with "state of the - g hstantial progress overall, achieved by combining a sequence
art” techniques based on wavelets, including thresholding of . ;
of incremental improvements.

decimated or undecimated wavelet transforms and also including
tree-based Bayesian posterior mean methods. Moreover, the o
curvelet reconstructions exhibit higher perceptual quality than B. Promising New Approach

wavelet-based reconstructions, offering visually sharper images . " . .
and, in particular, higher quality recovery of edges and of faint In this pape_r, we reportlnltl_al efforts atimage deno_lsmg based
linear and curvilinear features. Existing theory for curvelet O arecently introduced family of transforms—the ridgelet and
and ridgelet transforms suggests that these new approaches cancurvelet transforms—which have been proposed as alternatives
outperform wavelet methods in certain image reconstruction to wavelet representation of image data. These transforms, to
problems. The empirical results reported here are in encouraging pe described further below, are new enough that the underlying
agreement. theory is still under development. Software for computing these
Index Terms—Curvelets, discrete wavelet transform, FFT, new transforms is still in a formative stage, as various trade-offs
filtering, FWT, radon transform, ridgelets, thresholding rules, snd choices are still being puzzled through.
wavelets. Although we have completed an initial software development
only, and although the time and effort we have expended in
I. INTRODUCTION implementation, and in fine-tuning, is miniscule in comparison
to the efforts which have been made in image denoising by
~wavelets, we have been surprised at the degree of success
VER THE last decade, there has been abundant interggkady achieved. We present in this paper evidence that the
. in wavelet methods for noise removal in signals anflew approach, in this early state of development, already
images. In many hundreds of papers published in journ@grforms as well as, or better than, mature wavelet image
throughout the scientific and engineering disciplines, a widfenoising methods. Specifically, we exhibit higher PSNR on
standard images such Barbara andLenna, across a range
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images we study are small in size, so that the asymptotic thedryis possible to efficiently superpose several terms with
cannot be expected to fully “kick in;” however, we do observeommon ridge lines (i.e., commot, & and different scales
already, at these limited image sizes, noticeable improvemeuntso efficiently approximate singularities along a line. But
of the new methods over wavelet denoising. ridgelets also work well for representing smooth functions,

By combining the experiments reported here with thia fact they represent functions in the Sobolev spHcg of
theory being developed elsewhere, we conclude that the niewuctions with two derivatives in mean-square just as efficiently
approaches offer a high degree of promise which may repay wavelets (i.e., comparable numbers of terms for same degree
further development in appropriate image reconstructiai approximation).

problems. There are also various discrete ridgelet transforms—i.e., ex-
pansions into a countable discrete collection of generating el-
C. New Transforms ements—based on ideas of frames and orthobases. For all of

these notions, one has frame/basis elements localized near lines

The new ridgelet and curvelet transforms were developgg all locations and orientations and ranging though a variety
over several years in an attempt to break an inherent lingif scales (localization widths). It has been shown that for these
plaguing wavelet denoising of images. This limit arises frochemes, simple thresholding of the discrete ridgelet transform
the well-known and frequently depicted fact that the two-dprovides near-optimaV-term approximations to smooth func-
mensional (2-D) wavelet transform of images exhibits largéns with discontinuities along lines [7], [4], [17]. In short, dis-
wavelet coefficients even at fine scales, all along the importagrete ridgelet representations solve the problem of sparse ap-
edges in the image, so that in a map of the large wavelsfoximation to smooth objects with straight edges.
coefficients one sees the edges of the images repeated at scale image processing, edges are typically curved rather than
after scale. While this effect is visually interesting, it means th@fraight and ridgelets alone cannot yield efficient representa-
many wavelet coefficients are required in order to reconstrygins. However at sufficiently fine scales, a curved edge is al-
the edges in an image properly. With so many coefficients fqost straight, and so to capture curved edges, one ought to be
estimate, denoising faces certain difficulties. There is, owing e to deploy ridgelets in a localized manner, at sufficiently fine

well-known statistical principles, an imposing tradeoff betweegtales. Two approaches to localization of ridgelets are possible.
parsimony and accuracy which even in the best balancing leads

to a relatively high mean squared error (MSE). 1) Monoscale ridgeletsHere, one thinks of the plane as
While this tradeoff is intrinsic to wavelet methods (and also partitioned into congruent squares of a given f|xe.d side-

to Fourier and many other standard methods), there exist, on length and constructs a system of renormalized ridgelets

theoretical grounds, better denoising schemes for recovering smopthly Iogahzed near each such square [3].

images which are smooth away from edges. For example,z) Mulyscale rldgele.ts.H_ere, one thinks O.f. the plane as

asymptotic arguments show that, in a certain continuum model ~ SuPiected to an infinite series of partitions, based on

of treating noisy images with formal noise parametefor dyadic scales, where each partition, like in the monoscale

recovering an image which &2 smooth away fronC2 edges, case, consists of squares of the given dyaglic sidelength.
the ideal MSE scales like*/® whereas the MSE achievable The corresponding dictionary of generating elements

by wavelet methods scales only like(For discussions of this is a pyramid of W|.ndowed ridgelets, renormahzgd and
white noise model, see [8], [16].) trans_ported to a wide range of scales and locations, see
To approach this ideal MSE, one should develop new expan- Sections II-B and IV.
sions which accurately represent smooth functions using of#pth localization approaches will play important roles in this
a few nonzero coefficients, and which also accurately reprneaper.
sent edges using only a few nonzero coefficients. Then, becaus€urvelets are based on multiscale ridgelets combined with a
so few coefficients are required either for the smooth parts gatial bandpass filtering operation to isolate different scales
the edge parts, the balance between parsimony and accuf@gy[5]. Like ridgelets, curvelets occur at all scales, locations,
will be much more favorable and a lower MSE results. Thand orientations. However, while ridgelets all have global
ridgelet transform and curvelet transform were developed dgngth and variable widths, curvelets in addition to a variable
plicitly to show that this combined sparsity in representation e@fidth have a variable length and so a variable anisotropy.
both smooth functions and edges is possible. The length and width at fine scales are related by a scaling
The continuous ridgelet transform provides a sparse reptew width = length? and so the anisotropy increases with
sentation of both smooth functions and of perfectly straighecreasing scale like a power law. Recent work shows that
edges. As introduced in [2], thddgelet transformin two thresholding of discrete curvelet coefficients provide near-op-
dimensions allows the representation of arbitrary bivariatenal N-term representations of otherwise smooth objects with
functions f(x1, z2) by superpositions of elements of the forndiscontinuities along>? curves.
a=V/2p((w1cosf + xasinf — b)/a). Herey is a wavelet,  Quantitatively, theN-term squared approximation error by
a > 0 is a scale parametef,is an orientation parameter, andcurvelet thresholding scales likeg(V)*/N2. This approxi-
b is a location scalar parameter. These so-called ridgelets aration-theoretic result implies the following statistical result.
constant along ridge lines; cos# + z2sinf, and along the By choosing a threshold so that one is reconstructing from the
orthogonal direction they are wavelets. Because ridgeletslaigestNV ~ ¢ 2/2 noisy curvelet coefficients in a noisy image
fine scales =~ 0 are localized near lines; cos @ +z2sinf = b, at noise levek, one obtains decay of the MSE almost of order
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O(¢*/?). In contrast, in analyzing objects with edges, waveletalid a.e. for functions which are both integrable and square in-
give anN-term squared approximation error only of si¥e!, tegrable. Furthermore, this formula is stable as one has a Par-
and wavelet thresholding gives a corresponding MSE only séval relation

sizeO(¢) and no better. 2% poo  poo da _ dé
Jlr@rae= [ [ [ Riavop Gall @
D. This Paper 0 /oo 0 “ "

So according to theory for a certaiontinuousspace model, Hence, much like the wavelet or Fourier transforms, the identity
discrete ridgelet transforms and discrete curvelet transfor® expresses the fact that one can represent any arbitrary func-
provide near-ideal sparsity of representation of both smodifn as a continuous superposition of ridgelets. Discrete analogs
objects and of objects with edges. In a certain continuous-sp&d3) and (4) exist; see [2] or [17] for a slightly different ap-
statistical theory, this implies that simple thresholding of noiggroach.
coefficients in these expansions is a near-optimal method of
denoising in the presence of white Gaussian noise. A. Radon Transform

In this paper we provide an initial test of these ideas in a dig- A basic tool for calculating ridgelet coefficients is to view
ital image processing setting, where images are available onrgiyelet analysis as a form of wavelet analysis in the Radon do-
n-by-n grid. We first review some basic ideas about ridgelet antlain. We recall that the Radon transform of an objéd the
curvelet representations in the continuum. We next use thesglection of line integrals indexed bip, t) € [0, 2r) x R
to develop a series of digital ridgelet and digital curvelet trangiven by
forms taking digital input data on a Cartesian grid. Next we con-
sider a model denoising problem where we embed some stapf(g, t) = /f(xl, x2)6(x1 cos 8+x4 sin0—t) dzy dzo (5)
dard images in white noise and apply thresholding in the digital
curvelet transform domain. Finally we discuss interpretatioRghere 5 is the Dirac distribution. The ridgelet coefficients

and possibilities for future work. Rs(a, b, 6) of an objectf are given by analysis of the Radon
Not surprisingly, other researchers have undertaken effortst9nsform via

implement ridgelet and curvelet transforms, and develop appli-
cations. In addition to work mentioned in the body of the article, Ry(a, b, ) = /Rf(e, t)a_l/Qz/)((t —b)/a) dt.
we would like to point out the work of Do and Vetterli [13],

Donoho and Duncan [18]. We would also like to mention thRence, the ridgelet transform is precisely the application of a
articles of Sahiner and Yagle [21]-{23], Olson and DeStefange-dimensional (1-D) wavelet transform to the slices of the

[20], Zhaoet al. [30], and Zuidwijk [31], [32] although these Radon transform where the angular varialis constant and
references are less directly related. ¢ is varying.

[I. CONTINUOUS RIDGELET TRANSFORM B. Ridgelet Pyramids

The 2-D continuous ridgelet transformR¥ can be defined  Let @ denote a dyadic squar@ = [k, /2°, (ki +1)/2°) x
as follows [2]. We pick a smooth univariate functignR. — R, [k2/2%, (k2 + 1)/2°) and letQ be the collection of all such

with sufficient decay and satisfying the admissibility conditiorflyadic squares. We writ@; for the collection of all dyadic
squares of scale. Associated to the squarés € Q, we con-

struct a partition of energy as follows. With a nice smooth

window obeyingzk1 ko w?(x1 — k1, x2 — ko) = 1, we dilate

and transporty to all 7square$2 at scales, producing a collec-

which holds if, sayy) has a vanishing meafiy'(t) dt = 0. We tion of windows(wg) such that thes3s, @ € Q,, make up a

will suppose that) is normalized so thaf [)(¢)|*¢2dé = 1. partition of unity. We also le;, denote the transport operator
For eachu > 0, eachh € R and eaclf € [0, 2r), we define acting on functiong; via

the bivariateridgelety, , ¢: R*> — R? by

/ ()2 /1¢[2 de < = 1)

(Tgg)(xy, x2) = 2°g(2°xy — k1, 2w — ko).
—aq 2. 9 ing—
ba T)=a p((x1cosl + z28inf —b)/a 2 ) . .
Ya.b,0(x) W= : Vo @ With these notations, it is not hard to see that
this function is constant along lines cos 8 +x5 sin 6 = const. da  d6
Transverse to these ridges it is a wavelet. Given an integrable W@ = /<f7 wWQTQVa,b,6)1QVa, b6 —5 db T

3
a
bivariate functionf(z), we define its ridgelet coefficients by
and, therefore, summing the above equality across squares at a

given scale gives

f=> fu}

We have the exact reconstruction formula QeQ,

Ry(a, b, 6) = /wa,b,e(x)f(x)daz.

2r oo roo da  db _ ) L
fla) = /0 [ _ /0 R (a, b, 9)1/1a,b,9(x)—§dbﬂ 3) —EQ: / (s wQTga, b, 0)wQTQe,ve —zdb = (6)

a
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The identity (6) expresses the fact that one can represent A G @ @GP B
any function as a superposition of elements of the form : : f f f f i
wolora, v, e; that is, of ridgelet elements localized near the B SRR R RGP B g 0
squares). For the functiorpt,, s, 6 is the ridgeletia, o, 5, N : :
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@
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(2) with parameters obeying
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ag=2"a, 6g=0, bo=>b+k2 ®cosf+ k2 °siné P
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and, thuswo T, » ¢ is @ windowed ridgelet, supported near Cd
the squaré&), hence the namiecal ridgelet transform TG T SRR P PRRR ST
The previous paragraph discussed the construction of local o o AL LN _ ” ~
ridgelets of fixed length, roughy—* (s fixed). Letting the scale j < j ; ; ; ,
s vary defines the multiscale ridgelet dictiona{rw§b79: s > IRV RSN S S S U N
50, Q€ Qs,a>0,beR,0€(0,2r)} by 5 A NN NG
ab bbb e e e
¢11Q,b,0 = wQTQz/)a71,7 @ —“t —é —é —1I (‘1 1I é :I3 «It

that i hol id of | | ridgelets at . | th Fig. 1. lllustration of the digital polar grid in the frequency domain forran
atis, a whole pyramid ot local ridgelets at various lengtns aif, image(n = 8). The figure displays the set of radial lines joining pairs of

locations. This is, of course, a massively overcomplete repggmmetric points from the boundary of the square. The rectopolar grid is the set
sentation system and no formula like (6) is available for thig points—marked with circles—at the intersection between those radial lines

X d : S d th hich llel to th :
multiscale ridgelet pyramid, because it is highly overcompletgr.‘ ose which are parafiet fo fhe axes

B. A Polar Sampling Scheme for Digital Data
I1l. A PPROXIMATE DIGITAL RIDGELET TRANSFORM

_ ) _ _ For our implementation of the Cartesian-to-polar conversion,
So a basic strategy for calculating the continuous ridgelgl have used a pseudo-polar grid, in which the pseudo-radial

transform is first to compute the Radon transfafifi(¢, ) and  yariable has level sets which are squares rather than circles.

second, to apply a 1-D wavelet transform to the SliB¢¢-, 6).  starting with Oppenheim and Mersereau [19] this grid has often

In this section we develop a digital procedure which is inspirggben, called theoncentric squaregrid in the signal processing

by this viewpoint, and is realizable onby » numerical arrays. |iterature; in the medical tomography literature it is associated
with thelinogram while in [1] it is called the rectopolar grid; see

A. Fourier Strategy for Digital Radon Transform this last reference for a complete bibliographic treatment. The
A fundamental fact about the Radon transform is the projegeometry of the rectopolar grid is illustrated on Fig. 1. We select
tion-slice formula [12] 2n radial lines in the frequency plane obtained by connecting the

origin to the vertice$k;, k2) lying on the boundary of the array

(k1, k2),i.e.,suchthaty ork; € {—n/2, n/2}. The polar grid

& m (£ serves to index a given radial line while the position of

the point on that line is indexed by) that we shall use is the

This says that the Radon transform can be obtained by applyjRgersection between the set of radial lines and that of Cartesian

the 1-D inverse Fourier transform to the 2-D Fourier transforffheg parallel to the axes. To be more specific, the sample points

restricted to radial lines going through the origin. along a radial lineZ whose angle with the vertical axis is less or
This of course suggests that approximate Radon transforgi;al tor /4 are obtained by intersectingwith the set of hori-

for digital data can be based on discrete fast Fourier transformagnta| lines{xy = ko, k2 = —n/2, —n/2+1, ..., n/2}. Sim-

This is a widely used approach, in the literature of medic:ﬁg”y, the intersection with the vertical lingiss; = k1, ki =

imaging and synthetic aperture radar imaging, for which the, /2 _p /24 1, ... n/2} defines our sample points when-

key approximation errors and artifacts have been widely digyer the angle betweehand the horizontal axis is less or equal

cussed. In outline, one simply does the following, for griddeg » /4. The cardinality of the rectopolar grid is equal%e? as

Acosf, Asin®) = [ Rf(t, )e M dt.
J( )

data(f(i1, i2)), 0 < iy, 42 <n — 1. there are2n radial lines anch sampled values on each of these
1) 2-D FFT. Compute the 2-D FFT of giving the array lines. As a result, data structures associated with this grid will
(f(k1, k2)), —n/2 < k1, ke < /2 —1. have a rectangular format. We observe that this choice corre-

2) Cartesian to Polar ConversionUsing an interpolation sponds to irregularly spaced values of the angular variable
scheme, substitute the sampled values of the Fourier _ _
transform obtained on the square lattice with samplée Interpolation to Rectopolar Grid

values off on a polar lattice: that is, on a lattice where To obtain samples on the rectopolar grid, we should, in gen-

the points fall on lines going through the origin. eral, interpolate from nearby samples at the Cartesian grid. In
3) 1-D IFFT. Compute the 1-D IFFT on each line, i.e., foprinciple, compare [1], [15], the interpolation of Fourier trans-
each value of the angular parameter. forms is a very delicate matter because of the well-known fact

The use of this strategy in connection with ridgelet transforntisat the Fourier transform of an image is highly oscillatory, and
has been discussed in the articles [14], [15]. the phase contains crucial information about the image. In our
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approach, however, we use a crude interpolation method: wieusly possible in principle—just keeping track of where the
simply impute forf(g“é,m) the value of the Fourier transformentries are have been copied to and undoing the process.
taken at the point on the Cartesian grid nearest tQ. Our reconstruction rule obtains, for each point on the Carte-
There are, of course, more sophisticated ways to realigian grid, thearithmetic mean of all the values in the rectopolar

the Cartesian-to-polar conversion; even simple bilinear intagrid which have that Cartesian point as their nearest poltitis
polation would offer better theoretical accuracy. A very higpbrovides a numerically stable left inverse. Indeed, if applied to
accuracy approach used in [14] consists in viewing the dagerturbed set of rectopolar values, this rule gives an approxi-
(f(ky, k2)) as samples of the trigonometric polynomi&l mate reconstruction of the original unperturbed Cartesian values

defined by in which the approximation errors are smaller than the size of
the perturbations suffered by the rectopolar values. (This final
n=1mn-1 comment is reassuring in the present denoising context, where
F(wy, wp) = Z Z f(i1, t2) exp{—i(w1i1 +w2i2)} (7) our reconstructions will always be made by perturbing the em-
i1=0i3=0 pirical rectopolar FT of the noisy data.) Phrased in mathematical
i ) - terms this gives
on a square lattice; that is, with
f(k‘l, /{}2) = F((27T/€1/7’L), (27(/{}2/71)) with e = 1/#R(C) Z YR

—n/2 < ki, ke < n/2. There turns out [14], [1] to be an exact
algorithm for rapidly finding the values of" on the polar

grid. The high-accuracy approach can be used in reverggere( is a given point on the Cartesian grid aR¢C) is the
allowing for exact reconstruction of the original trigonometriggt of rectopolar points that are closesttoStability in £, for
polynomial from its rectopolar samples. instance, follows from the observation

Our nearest-neighbor interpolation, although admittedly
simple-minded, happens to give good results in our application. lzc|? < 1/#R(0) Z lyr|? < Z lyr|?
In fact numerical experiments show that in overall system RER(C) RER(C)
performance, it rivals the exact interpolation scheme. This is
explainable as follows. Roughly speaking, the high-frequenejhce( 2(C))c is a partition of the set of rectopolar points, sum-
terms in the trigonometric polynomidl are associated with ming this last inequality across the Cartesian grid gjigf’ <
pixels at the edge of the underlyimgby » grid. Our crude in- ||y||2.
terpolation evidently will fail at reconstructing high-frequency It remains to explain the italicized claim, because, as we have
terms. However, in the curvelet application—see below—wgeen, from it flows the exact reconstruction property and sta-
use a window function to downweight the contributions of ousility of the inverse. Consider the rectopolar points in the hour-
reconstruction near the edge of the image array. So, inaccugkass region made of “basically vertical lines,” i.e., lines which
cies in reconstruction caused by our crude interpolation catake an angle less thatf4 with vertical, and more specifically
be expected to be located mostly in regions which make litiRose points on a single horizontal scan line. Assuming the scan
visual impact on the reconstruction. line is not at the extreme top or bottom of the array, these points

A final point about our implementation. Since we are intefare spaceditrictly less than one unit aparnvhere our unit is the
ested in noise removal artifact removal is very important. Ajpacing of the Cartesian grid. Therefore, when we consider a
the signal-to-noise ratios (SNRs) we consider, high-order-aCartesian grid poin€ belonging to this scan line and ask about
curacy interpolation formulas which generate substantial arthe rectopolar point®; and Rx which are closest to it on the
facts (as many high-order formulas do) can be less useful thaft and right, respectively, these two points cannot be as much
low-order-accuracy schemes which are relatively artifact-fregs one unit apart| 2, — Rg|| < 1. Therefore, at least one of
A known artifact of exact interpolation of trigonometric poly-the two points must be strictly less than 1/2 unit away from the
nomials: substantial long-range disturbances can be generategtesian Point, i.e., eithfiiz;, — C|| < 1/2or ||Rg — C|| <
by local perturbations such as discontinuities. In this sense, aye. Without loss of generality suppose thidt;, — C|| < 1/2.
crude interpolation may actually turn out to be preferable fathen clearlyR;, hasC as its closest Cartesian point. In short,

RCR(C)

some purposes. every Cartesian point in the strict interior of the “hourglass” as-
sociated with the “basically vertical” lines arises as the strict
D. Exact Reconstruction and Stability closest Cartesian point of at least one rectopolar point. Sim-

The Cartesian-to-rectopolar conversion we have sugges'tlgﬁ statements can be made about points on the boundary of
here is reversible. That is to say, given the rectopolar valu% hourglass, althpugh the argu_ments sup_portlng_those_ st_ate-
output from this method, one can recover the original Cartesig}gts are much simpler, essenUaIIy_mer_e inspection. Similar
values exactly. To see this, take as given the followiigim: statements_ca_n _be mad(_a at_:)out the p oints in the transposed hour-
the assignment of Cartesian points as nearest neighbors of rg@ss. The italicized claim is established.
topolar points happens in such a way that each Cartesian point . ,
is assigned as the nearest neighbor of at least one rectopofar ONe-Dimensional Wavelet Transform
point It follows from this claim that each value in the orig- To complete the ridgelet transform, we must take a 1-D
inal Cartesian input array is copied into at least one place wavelet transform along the radial variable in Radon space. We

the output rectopolar array. Hence, perfect reconstruction is atow discuss the choice of digital 1-D wavelet transform.



STARCK et al. CURVELET TRANSFORM FOR IMAGE DENOISING 675

Experience has shown that compactly supported wavelets i
can lead to many visual artifacts when used in conjunction
with nonlinear processing—such as hard-thresholding of IMAGE M mes | =
individual wavelet coefficients—particularly for decimated T
wavelet schemes used at critical sampling. Also, because of L/ \\

the lack of localization of such compactly supported wavelets
in the frequency domain, fluctuations in coarse-scale wavelet
coefficients can introduce fine-scale fluctuations; this is un- ~|__wrip
desirable in our setting. Here we take a frequency-domain

approach, where the discrete Fourier transform is reconstructed
from the inverse Radon transform. These considerations lead
us to use band-limited wavelet—whose support is compact | Radon Transtorm Ridgelet|Transform
in the Fourier domain rather than the time-domain. Other

implementations have made a choice of compact support in the
frequency domain as well [14], [15]. However, we have chosen

a specific overcomplete system, based on work of Statck

al. [26], [28], who constructed such a wavelet transform and

applied it to interferometric image reconstruction. The wavelet

transform algorithm is based on a scaling functjpsuch that

¢ vanishes outside of the intervihi., v.]. We defined the Fig.2. Ridgelettransform flowgraph. Each of theradial lines in the Fourier

scaling funCtiOI”t/A) as a renormalizeds-spline domain is processed separately. The 1-D inverse FFT is calculated along each
radial line followed by a 1-D nonorthogonal wavelet transform. In practice, the

1-D wavelet coefficients are directly calculated in the Fourier space.

FFF1D~

Angle

Frequency

(v) = 3 Bs(4v)

andz/3 as the difference between two consecutive resolutionsinvertible, and so has the exact reconstruction property. For the
) ) ) same reason, the reconstruction is stable under perturbations of
P(2v) = p(v) — ¢(2v). the coefficients.

R Last but not least, our discrete transform is computationally
Because) is compactly supported, the sampling theorem showgractive. Indeed, the algorithm we presented here has low com-
than one can easily build a pyramidmft-n/2+---+1=2n  plexity since it runs inO(n?log(n)) flops for ann x n image.
elements, see [28] for details.

This transform enjoys the following features. G. Digital and Discrete Ridgelet Transforms
» The wavelet coefficients are directly calculated in the

. . uite frankly, there is an apparent discrepancy between the
Fourier space. In the context of the ridgelet transforn?nQ Y PP pancy

: - . X eory of ridgelets and our proposed digital implementation
this QIIOWS avoiding the computa_tmn of the 1-D mversgvhicg requirges some justifi?:at?on. In (?ur digﬁal ridgelet
Fourier transfor_m along each radial line. . pyramid, the number of orientations is constant, i.e., indepen-

’ Eac.h.subbgnc.i is sampled above the Nqu|st rate, hen&gént of scale whereas in the theory, the number of orientations
avo@mg aliasing—a phenomenon typically encounter inversely proportional to the scale [2]. In other words, the
by critically sampled orthogonal wavelet transforms [25 eory imposes a downsampling on the set of orientations by

’ T_he reconstruction is trivial. The wavelet C(_)efficie_nt% factor two as one proceeds to the coarser scale. In some
simply n(_aed to b_e co-added to rc_aco_nstruct_ th_e mput Slgr"L,"aénse, our digital implementation increasingly oversamples the
at any given p0|r?t.. In our application, this implies tha&ngular variable at coarser scales.
the ridgelet coefﬁments S |.mpIy need to be co-added 10 There is an analogy here with wavelet algorithms for noise
_reconstruct Fourier F:oefﬁuents. removal. In the orthonormal wavelet pyramid, the number of

This wavelet transform introduces an extraredundancy fact@lements per scale and location is fixed—independent of scale.
which might be viewed as an objection by advocates of ost yndecimated wavelet transforms traditionally in use for
thogonality and critical sampling. However, we note that 0yengising do not exhibit this principle. There are increasingly
goal in this implementation is not data compression/efficief{any elements per scale and location at coarser scales. The
coding—for which critical sampling might be relevant—buting4ctical benefits of such redundant systems are well-estab-
stead noise removal, for which it well-known that overcomplet¢zhed. Because we are working in a denoising setting, there

ness can provide substantial advantages [9]. is an advantage in having more orientations than necessary
o ) at coarse scales. To continue with this analogy, undecimated
F. Combining the Pieces wavelet transforms are thought to be translation invariant.

Fig. 2 shows the flowgraph of the ridgelet transform. Theikewise, the digital ridgelet transform we introduced here is
ridgelet transform of an image of sizex n is an image of size in some sense “rotation invariant.”
2n x 2n, introducing a redundancy factor equal to four. We want to make unmistakably clear that the digital ridgelet
We note that, because our transform is made of a chaintainsform we presented is intended noise removal purposes.
steps, each one of which is invertible, the whole transform @ther strategies may be pursued for other intentions.
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H. Smooth Partitioning: Local Ridgelet Transforms high

frequencies

A digital version of the ideas presented in Section II-B de
composes the originad by » image into smoothly overlapping
blocks of sidelengtth pixels in such a way that the overlap be: e s s s s s s s
tween two vertically adjacent blocks is a rectangular array
sizeb by b/2; we use overlap to avoid blocking artifacts. For ai
n by n image, we coun2rn /b such blocks in each direction.

The partitioning introduces redundancy, as a pixel belongs
4 neighboring blocks. We present two competing strategies
perform the analysis and synthesis:

1) The block values are weighted (analysis) in such a wi
that the co-addition of all blocks reproduce exactly th N
original pixel value (synthesis). :

2) The block values are those of the image pixel values (an TR
ysis) but are weighted when the image is reconstruct [
(synthesis).

Of course, there are intermediate strategies and one could aj i=s

Radon Transtorm Ridgelet(Transforn

smooth windowing at both the analysis and synthesis stage ,i

NALE
i1

discussed in Section II-B, for example. In the first approach, t r
data are smoothly windowed and this presents the advantag
limit the analysis artifacts traditionally associated with bounc Fremey

aries. The drawback, however, is a loss of sensitivity. Indee ey
supposg for sake of S-imp”City that a Vertif:al line with intenSit1Y-ig 3. Curvelettransform flowgraph. The figure illustrates the decomposition
leve_l L intersects a given b_IOCk of size WlthQUt_ lOS_S of gen- of tHe.originaI image into subbands foilowed by the spatial partitioning of each
erality assume that the noise standard deviation is equal tosdbband. The ridgelet transform is then applied to each block.

When the angular parameter of the Radon transform coincides

with that of the line, we obtain a measurement with a signal in- IV. DIGITAL CURVELET TRANSFORM

tensity equal td L while the noise standard deviation is equal i )

to v/b [in this case, the value of the SNR& L]. If weights A. Discrete Curvelet Transform of Continuum Functions

are applied at the analysis stage, the SNR is roughly equal tdVe now briefly return to the continuum viewpoint of Sec-

I 23:1 w;/ /Ez;:l w? < /b L. Experiments have shown thattion_t”'B' S_uppt(;se Welt_set Ian _i(;litialll tgoal to _zrczlfdhuc?] a de_c?rr]n:[
this sensitivity loss may have substantial effects in filtering a©0Son using the muitiscale ridgeliet pyramid. The hope Is tha
plications and, therefore, the second approach seems moretﬁﬁ-"vo“'d allow us to use thin “brushstrokes” to reconstruct the

propriate since our goal is image restoration. image, with all lengths and widths available to us. Iq particu_lar,
We calculate a pixel valuef(i, j) from its four corre- this would seem allow us to trace sharp edg'es precisely using a
sponding block values of half-size= /2, namely,B, (i1, j.), few eIongaFed eIe.ments ywth very narrow W|dths. .
Ba(ia, j1), Bs(éy, j») and By(ia, j2) with i1, ji > b/2 and As r_ne_nt|o_ned in Section II-B, the full multiscale rldgelgt
io = i1 — £, j» = j1 — £, in the following way: pyram|d is h_|gh|)_/ overcomplete._As a consequence, convenient
algorithms like simple thresholding will not find sparse decom-

—w(ia/O)B1 (i1, 11) + w(l — is/0)Bs(ia, j .positio.ns when such good decompqsitions exist. An important
f (i2/H)B1 (i, 1) ( 2/)Baliz, 1) ingredient of the curvelet transform is to restore sparsity by re-
f2 =w(iz/€)Bs(i1, jo) +w(l — i2/£)Ba(ia, j2) ducing redundancy across scales. In detail, one introduces in-

terscale orthogonality by means of subband filtering. Roughly
speaking, different levels of the multiscale ridgelet pyramid are
used to represent different subbands of a filter bank output. At
the same time, this subband decomposition imposes a relation-
ship between the width and length of the important frame ele-
ments so that they are anisotropic and obeyth = length?”.
The discrete curvelet transform of a continuum function
a redundancy factor equal to four ?(xl, Z2) .makes use of a dyadic sequence of scales, and a
' &ank of filters (Pof, A1f, Aof, ...) with the property that

Finally, we note that in order to be in better agreement wi . ; .
; - e passband filter\, is concentrated near the frequencies
the theory one should of course introduce a normalizing facctl%s

depending upon the block-size. However, since we are con- ’
cerned about denoising and the thresholding of individual co- A, = Uy, * f, Uao(€) = U(272¢).

efficients, the normalization is a nonissue. Renormalizing coef-

ficients automatically renormalizes corresponding thresholdslim wavelet theory, one uses a decomposition into dyadic sub-
the exact same way, see Section V. bands[2?, 2°t1]. In contrast, the subbands used in the discrete

f(i, 9) =w(g2/O) f1 + w(l — j2/l) fo ®)

with w(z) = cos®(rx/2). Of course, one might select any othe
smooth, nonincreasing function satisfying(0) = 1, w(1) =
0, w'(0) = 0 and obeying the symmetry propeutyz) +w(1 —
z) = L
It is worth mentioning that the spatial partitioning introduce

225+2] e.g.,
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Fig. 4. A few curvelets.

curvelet transform of continuum functions have the nonstandardwWe believe that the “a trous” subband filtering algorithm is
form [22%, 225+2]. This is nonstandard feature of the discretespecially well-adapted to the needs of the digital curvelet trans-
curvelet transform well worth remembering. form. The algorithm decomposes afby n image! as a super-
With the notations of Section 1I-B, the curvelet decomposposition of the form
tion is the sequence of the following steps.
¢ Subband Decompositiofhe objectf is decomposed into J
subbands I(z,y) = cs(z, y) + > _ wilz, y)

j=1
fH(POvalvava"')' . . . .
wherec; is a coarse or smooth version of the original imdge
« Smooth Partitioning Each subband is smoothly win-andw; represents “the details df at scale2=/, see [28] for
dowed into “squares” of an appropriate scale (ghore information. Thus, the algorithm outputst 1 subband
sidelength~27%) arrays of sizen x n. [The indexing is such that, herg,= 1
corresponds to the finest scale (high frequencies).]
Asf = (weds fgee.

o . . . C. Algorithm
» RenormalizationEach resulting square is renormalized to
unit scale We now present a sketch of the discrete curvelet transform
algorithm:
9q = (Tg) HweA, f), Qe Q.. 9) 1) apply the & trous algorithm with scales;
2) Se.':-Bl = Bmin;
* Ridgelet AnalysisEach square is analyzed via the discrete 3) for j = 1, ..., J do
r|('jgelet. trgnsform. ) a) partition the subband; with a block sizeB; and
In this definition, the two dyadic subbanfis*, 22°*1] and apply the digital ridgelet transform to each block;
[22F1, 225%2] are merged before applying the ridgelet trans- b) if jmodulo2 = 1 thenB,; = 2B;;
form. c) elseB,;1 = B,.
o o The sidelength of the localizing windows is doubkgdevery
B. Digital Realization otherdyadic subband, hence maintaining the fundamental prop-

In developing a transform for digital by » data which is erty of the curvelet transform which says that elements of length
analogous to the discrete curvelet transform of a continucalsout2—7/2 serve for the analysis and synthesis of jtresub-
function (1, x2), we replace each of the continuum conceptsand [2/, 2/1]. Note also that the coarse description of the
with the appropriate digital concept mentioned in sectionsiagec, is not processed. Finally, Fig. 3 gives an overview of
above. In general, the translation is rather obvious and direitte organization of the algorithm.

However, experience shows that one modification is essential;This implementation of the curvelet transform is also redun-
we found that, rather than merging the two the two dyaddant. The redundancy factor is equall®/ + 1 wheneverJ
subbands[2?¢, 225+1] and [22°+1, 225%2] as in the theoret- scales are employed. Finally, the method enjoys exact recon-
ical work, in the digital application, leaving these subbandsruction and stability, because this invertibility holds for each
separate, applying spatial partitioning to each subband agldment of the processing chain.

applying the ridgelet transform on each subband separately ledrig. 4 shows a few curvelets at different scales, orientations
to improved visual and numerical results. and locations.
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V. FILTERING We use the PSNR as an “objective” measure of performance.
I . . n addition, we used our own visual capabilities to identify ar-
Ve now apply our digital transforms for removing noise fror{llfacts whose effects may not be well-quantified by the PSNR

image data. The methodology is standard and is outlined mainly . A
) . vdlue. The sort of artifacts we are particularly concerned about
for the sake of clarity and self-containedness.

L ) may be seen on display in the upper right panel of Fig. 5, which
Suppose that one is given noisy data of the form disglays a waveletpreé/onstruct%pn. Tr?is ir:nage hasga number

zi ;= fli, ) +oz; of problems near edges. In reconstructing some edges which

should follow smooth curves one gets edges which are poorly

where f is the image to be recovered ands white noise, i.e., defined and very choppy in reconstruction (for example in the
i bid N(0, 1). Unlike FFTs or FWTs, our discrete ridgeletcrown of the hat); also some edges which are accurately recon-
(resp. curvelet) transform is not norm-preserving and, therefoféructed exhibit oscillatory structure along the edge which is not
the variance of the noisy ridgelet (resp. curvelet) coefficiensesentin the underlying image (for example in the shoulder and
will depend on the ridgelet (resp. curvelet) indextor instance, the hat brim). We refer to all such effects as artifacts.
letting F' denote the discrete curvelet transform matrix, we have Our experiments are reported on Figs. 5 and 6. The latter
Fx i'f\',d'N((L FFT). Because the computation Bt is pro- figure represents a detail of the original image and helps the
hibitively expensive, we calculated an approximate valgief reader observe the qualitative differences between the different
the individual variances using Monte-Carlo simulations whefgethods (see Table I). We observe the following.
the diagonal elements & F7T are simply estimated by evalu-

; . /AU« The curvelet transform enjoys superior performance over
ating the curvelet transforms of a few standard white noise im-

local ridgelet transforms, regardless of the block size.

ages. _ o » The undecimated wavelet transform approach outputs a
Lety, be the noisy curvelet coefficienty = F'z). We use PSNR comparable to that obtained via the curvelet trans-
the following hard-thresholding rule for estimating the unknown  form (the PSNR is slightly better for the multiscale en-
curvelet coefficients tropy method).
N . . » The curvelet reconstruction does not contain the quantit
in=ua i ll/o 2 ko (10) avele

of disturbing artifacts along edges that one sees in wavelet
ix =0, if [ya|/o < kéa. (11) reconstructions. An examination of the details of the re-

stored images (Fig. 6) is instructive. One notices that the

In our experiments, we actually chose a scale-dependent value decimated wavelet transform exhibits distortions of the

for k; we havek = 4 for the first scalej = 1) while & = 3 for boundaries and suffers substantial loss of important detail.
the othergj > 1). The undecimated wavelet transform gives better bound-
aries, but completely omits to reconstruct certain ridges in

VI. FILTERING EXPERIMENTS the hatband. In addition, it exhibits numerous small-scale

A Who Else? embedded blemishes; setting higher thresholds to avoid
' 0 Else: these blemishes would cause even more of the intrinsic
In our first example, a Gaussian noise with a standard devia- structure to be missed.

tion equal to 20 was added to the classicahna image (512 « The curvelet reconstructions display higher sensitivity

x 512). Several methods were used to filter the noisy image. ~ than the wavelet-based reconstructions. In fact both
1) Thresholding of Monoscale ridgelet transforms with scale ~ wavelet reconstructions obscure structure in the hatband
(=block size) (8, 16, 32, and 64). which was visually detectable in the noisy panel at upper
2) Thresholding of Curvelet transform. left. In comparison, every structure in the image which is
3) Wavelet denoising methods in the following four families.  visually detectable in the noisy image is clearly displayed
a) Bi-orthogonal wavelet transform using the  inthe curvelet reconstruction.
Dauchechies-Antonini  7/9 filters (FWT-7/9) These observations are not limited to the particular experi-
and hard thresholding. ment displayed here. We have observed similar characteristics in

b) Undecimated bi-orthogonal wavelet transfornrmany other experiments; see Fig. 11 for another example. Fur-
(UWT-7/9) with hard thresholding; we uséd= 4 ther results are visible at http://www-stat.stanford.edu/~jstarck.
for the finest scale, and three for the others. To study the dependency of the curvelet denoising procedure

¢) Multiscale entropy processing using the undecen the noise level, we generated a set of noisy images (the noise
mated wavelet transform. This method is discussedfandard deviation varies from five to 100) from batanna
in [27], [29]. andBarbara . We then compared the three different filtering

d) Wavelet-domain Hidden Markov  Modelsprocedures based, respectively, on the curvelet transform and on
(WHMM) using Daubechies orthonormal waveletshe undecimated/decimated wavelet transforms. This series of
of length eight. This method [10] attempts tcexperiments is summarized in Fig. 7 which displays the PSNR
model the joint probability density of the waveletversus the noise standard deviation. These experimental results
coefficients and derives the filtered coefficientshow that the curvelet transform outperforms wavelets for re-
using an empirical Bayesian approach. We usedoving noise from those images, as the curvelet PSNR is sys-
this rather than a competing method of Simonceltematically higher than the wavelet PSNRs—and this, across a
[24] owing to availability of a convenient softwarebroad range of noise levels. Other experiments with color im-
implementation. ages led to similar results.
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Fig. 5. (Top left) Noisy image and (top right) filtered images using the decimated wavelet transform, (bottom left) the undecimated wavelet arzohfier
(bottom right) curvelet transform.

B. Recovery of Linear Features tilting substantially away from the Cartesian axes. Compare the
reconstructions of the faint diagonal lines in the image.
The next experiment (Fig. 8) consists of an artificial image
containing a few bars, lines and a square. The intensity is c@li- Recovery of Curves

stant along each individual bar; from left to right, the intensities In this experiment (Fig. 9), we have added a Gaussian noise to
of the ten vertical bars (these are in fact thin rectangles whic\w L

f ixels wid 4 170 pixels | e ar and Peace,” a drawing from Picasso which contains many
are four pixeis wide an pixels long) are equabzy2", curved features. Fig. 9 bottom left and right shows, respectively,

;n:d‘ihe hgiszh;:rfggrsé%:\ll?gt?ﬂIi;hf/gﬂ;rsh?aeseﬁ i?g:a(lefsoh]the restored images by the undecimated wavelet transform and
- DIsplay 9 curvelet transform. Curves are more sharply recovered with

beenlog-transformed in order to better see the results at Ioﬁ’{e curvelet transform

SNR. The authors are working on new methods (some of which

The curvelet reconstruction of the nonvertical lines I%/ill be based on the curvelet transform) to extract and recover

gs;l\llgrestlzrasnhs?;?;r ;Izznsézfrﬁs ?gta?i?]euigg fm?;mlglre;sg f;-r rves from noisy data with greater accuracy and, therefore, this
9 P & mple is merely to be taken for illustrative purposes.

the reconstruction of the vertical lines is concerned. Rough?y
speaking, for those templates, the wavelet transforms stops .
detecting signal at a SNR equal to one (we defined here the Denoising of a Color Image

SNR as the intensity level of the pixels on the line, divided by In a wavelet based denoising scenario, color RGB images are
the noise standard deviation of the noise) while the cut-off valgenerally mapped into the YUV space, and each YUV band is
equals 0.5 for the curvelet approach. It is important to notken filtered independently from the others. The goal here to
that the horizontal and vertical lines correspond to privilegeste whether the curvelet transform would give improved results.
directions for the wavelet transform, because the underlyifige used four of the classical color images, namednna,
basis functions are direct products of functions varying soleBeppers , Baboon, andBarbara (all images except per-

in the horizontal and vertical directions. Wavelet methods willapsBarbara are available from the USC-SIPI Image Data-
given even poorer results on lines of the same intensity thase [11]. We performed the series of experiments described in
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Fig. 6. (Top left) Noisy image and (top right) the restored images after denoising by means of the DWT, (bottom left) UWT, and (bottom right) the curvele
transform. The diagonal lines of the hat have been recovered with much greater fidelity in the curvelet approach.

TABLE | pleasant. Fig. 11 illustrates this last point. For other examples,

TABLE OF PSNR VALUES AFTER FILTERING THE NOISY IMAGE [Lenna + please check http://www-stat.stanford.edu/~jstarck
GAussIAN WHITE NOISE (SIGMA = 20)]. IMAGES ARE AVAILABLE AT ' ’ ’ ’

http://www-stat.stanford.edu/~jstarck/lena.html

VIl. CONCLUSION
Method PSNR Comments

In this paper, we presented a strategy for digitally im-
plementing both the ridgelet and the curvelet transforms.
The resulting implementations have the exact reconstruction

Noisy image 22.13
FWT7-9 + Universal Hard thresh. 28.35 many artifacts

UWT?7-9 + ksigma Hard thresh. 31.94  very few artifact property, give stable reconstruction under perturbations of the

UWT7-9 + Multiscale entropy 32.10  very few artifact coefficients, and as deployed in practice, partial reconstructions

WHMM 30.80  some noise remains seem not to suffer from visual artifacts.

Local ridgelets (B = 8) 99 99 artifacts There are, of course, many competing strategies tq t_ranslate
] i the theoretical results on ridgelets and curvelets into digital rep-

Local ridgelets (B = 16) 30.87 few artifacts resentations. Guided by a series of experiments, we arrived at

Local ridgelets (B = 32) 30.97 few artifacts several innovative choices which we now highlight.

Local ridgelets (B = 64) 30.79 few artifacts 1) Subband DefinitionWe split the nonstandard frequency

Curvelets (B = 16) 31.95  very few artifact subband[22¢, 22s+2]—arising in theoretical treatments

of curvelets [5]—into the two standard dyadic frequency
subbandg2?®, 225+1] and [22°*!, 225%2] and we pro-
Section VI-A and summarized our findings on Fig. 10 which cessed each of them individually. This seems to give
again displays the PSNR versus the noise standard deviation better result.

for the four images. In all cases, the curvelet transform out- 2) Subband FilteringThe a trous algorithm is well-adapted
performs the wavelet transforms in terms of PSNR—at least  to the decomposition into subbands. For instance, an al-
for moderate and large values of the noise level. In addition, ternative strategy using a decimated 2-D wavelet trans-
the curvelet transform outputs images that are visually more  form introduces visual artifacts near strong edges, in the
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Fig. 7. PSNR versus noise standard deviation for different denoising methods. The three methods based on the curvelet, undecimated and dgetmated wav
transforms are represented with a continuous, dashed, and dotted line, respectively. The left panel corrdspomals amd the right tBarbara .

Fig. 8. Top panels: a geometric image and that same image contaminated with a Gaussian white noise. The bottom left and right panels display the restore
images using the undecimated wavelet transform and the curvelet transform, respectively.

form of curve fragments at 9orientation to the under- object of extensive development over the last decade. We find
lying edge direction. this encouraging, particularly as there seem to be numerous
3) Wavelet underlying the Ridgelet Transfor@ur ridgelet opportunities for further improvement. Areas for further work
transform uses a 1-D wavelet transform based on waveletsarly include improved interpolation schemes, and improved
which are compactly supported in the Fourier domain. Iff@lding strategies for space partitioning, to mention a few. On
wavelet, compactly supported in space, is used insteadhé other hand, the digital curvelet transform is nonorthogonal,
appears that thresholding of ridgelet/curvelet coefficientpiite redundant and as a consequence, the noisy coefficients
may introduce many visual artifacts in the form of ghostre correlated and one should clearly design thresholding rules
oscillations parallel to strong linear features. taking into account this dependency. There is an obvious tree
A remark aboutvhich principles are importanbecause we structure with parent and children curvelet coefficients that
are working in a denoising setting, the attraction of traditionahight also be used effectively in this setting.
transform desiderata—critical sampling and orthogonality—is We also look forward to testing our transforms on larger
weak. Instead, redundancy, and overcompleteness seem to affgasets in order to fully exploit the multiscale nature of the
advantages, particularly in avoiding visual artifacts. curvelet transform. Images of size 2048 2048 or 4096
The work presented here is an initial attempt to address tke4096 would be a reasonable target, as those resolutions
problem of image denoising using digital analogs of some nemill undoubtedly become standard over the next few years.
mathematical transforms. Our experiments show that curvefd images scale up, the asymptotic theory which suggests
thresholding rivals sophisticated techniques that have been that curvelets outperform wavelets may become increasingly
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Fig. 9. Top panels: a Picasso picture (War and Peace) and that same image contaminated with a Gaussian white noise. The bottom left and righypanels disp
the restored images using the undecimated wavelet transform and the curvelet transform, respectively.
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Fig. 10. PSNR versus noise standard deviation using different filtering methods. YUV and curvelet, YUV and undecimated wavelet, and YUV andl decimate
wavelet transforms are represented, respectively, with a continuous, dashed, and dotted line. The upper left panel cortespund&®B), the upper right to
pepper (RGB), the bottom left t8aboon (RGB), and the bottom right tBarbara (RGB).

relevant. The quality of the local reconstructions as illustratédhnsform are especially promising. We hope to report on this
on the “zoomed restored images” obtained via the curvelssue in a forthcoming paper.
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Fig. 11. Upper left: noisarbara image. Upper right: restored image after applying the curvelet transform. Details of the restored images are shown on the
bottom left panel (undecimated wavelet transform) and right (curvelet transform) panel.
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