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Abstract

We consider a model problem of recovering a function f(x1, x2) from noisy Radon
data. The function f to be recovered is assumed smooth apart from a discontinuity
along a C2 curve – i.e. an edge. We use the continuum white noise model, with noise
level ε.

Traditional linear methods for solving such inverse problems behave poorly in the
presence of edges. Qualitatively, the reconstructions are blurred near the edges; quan-
titatively, they give in our model Mean Squared Errors (MSEs) that tend to zero with
noise level ε only as O(ε1/2) as ε→ 0. A recent innovation – nonlinear shrinkage in the
wavelet domain – visually improves edge sharpness and improves MSE convergence to
O(ε2/3). However, as we show here, this rate is not optimal.

In fact, essentially optimal performance is obtained by deploying the recently-
introduced tight frames of curvelets in this setting. Curvelets are smooth, highly
anisotropic elements ideally suited for detecting and synthesizing curved edges. To
deploy them in the Radon setting, we construct a curvelet-based biorthogonal decom-
position of the Radon operator and build “curvelet shrinkage” estimators based on
thresholding of the noisy curvelet coefficients. In effect, the estimator detects edges at
certain locations and orientations in the Radon domain and automatically synthesizes
edges at corresponding locations and directions in the original domain.

We prove that the curvelet shrinkage can be tuned so that the estimator will attain,
for each δ > 0 the MSE O(ε4/5−δ), as noise level ε→ 0. This rate of convergence holds
uniformly over a class of functions which are C2 except for discontinuities along C2

curves, and (except for the proviso δ > 0) is the minimax rate for that class.
Our approach is an instance of a general strategy which should apply in other inverse

problems; we sketch a deconvolution example.
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1 Introduction

Suppose we wish to recover an object f(t) – a function in L2(IRd) – but we are able to
observe data only about g(u) = (Kf)(u), where K is a linear transformation, such as
Radon transform or convolution transform. Such Linear Inverse Problems arise in scientific
settings ranging from Medical Imaging to Physical Chemistry to Extragalactic Astronomy.
Moreover, we assume that the data are noisy, so that we observe y(u) given by

y(u) = (Kf)(u) + z(u), u ∈ U

where z is a noise (whether stochastic or deterministic, we do not as yet specify). We
are interested in recovering f from the data y. For definiteness, we use the L2(IRd) norm
||f̂ − f ||2 to measure quality of recovery.

One’s first impulse might be to attempt the estimate f̂ = K−1y. However, in the cases
of most interest scientifically, K is not invertible, in the sense that K−1 does not exist as
a bounded linear operator; such inverse problems are called ill-posed. For reviews of these
concepts, see Bertero (1989), O’Sullivan (1986), and Wahba (1989).

It is now standard to approach inverse problems by the method of regularization, in
which one applies, rather than K−1, a linear operator of the form (KTK+λΣ)−1KT . This
typically produces a reconstruction in which certain features of the original are ‘smoothed
away’. This phenomenon is very evident in imaging applications, such as medical and
seismic, where often the reconstructions by method of regularization are seen to be blurred
versions of the original.

This blurring phenomenon is particularly of concern when the underlying object has
edges, and when the location and size of these edges are of central interest. Such edge-
dominated situations are relatively common in imaging applications, where the edges signify
boundaries between different parts of a scene or different layers in the earth, or different
organs in the body. It would be of interest to obtain sharper reconstructions for objects
with edges.

The phenomenon of blurring and the goal of edge recovery have been studied by many
researchers over the last few years; a partial listing of articles specifically devoted to this
theme would include [4, 14, 39, 40, 46, 59, 61, 62].

Many creative ideas have been brought to bear on this problem, including Markov
Random Fields, Anisotropic Diffusions, Level-Set Methods, Total Variation regularization
methods and non-convex optimization techniques.

Many of the cited articles propose heuristically valuable methods, which, when applied
to concrete imaging problems at currently practical scales of resolution and noise, produce
visually appealing results using currently available computing resources. However, in our
opinion, much of the cited work, though practically valuable, lacks a theoretical perspec-
tive which would allow one to say that the problem is really well understood. What are
the ultimate limits of performance in recovering objects with edges from indirect, noisy
observations? What methods can attain that performance?

In this article, we develop a theoretical perspective on these questions using tools from
harmonic analysis and statistical decision theory. We are able to decompose the inverse
problem in a new way and obtain insights about the degree of attainable performance which
are quite different from those which might be inferred from the literature cited above.

In this introduction we develop the theme of decomposing an inverse problem, both
from a classical viewpoint and from a new viewpoint, and discuss insights derivable from
these decompositions, leading up to a statement of our main results. We hope that many
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readers will be able to follow us through the introduction, even if later sections involve
analysis of a type they do not intend to pursue in detail.

1.1 The SVD Paradigm

It is now standard to decompose inverse problems by Singular Value Decomposition meth-
ods, defined as follows. We let ‖ · ‖2 stand equally for the L2(dt) and L2(du) norms, and
let 〈, 〉 and [, ] denote the respective inner products. If K∗K is a compact operator we
let (eν(t)) denote its eigenfunctions, k2

ν its eigenvalues, and hν(u) the normalized image
hν(u) = (Keν)(u)/‖Keν‖ of these. If no kν is zero, we have the reproducing formula

f =
∑
ν

k−1
ν [Kf, hν ]eν .

A reconstruction rule may be based on this formula, and the idea that the “important”
coefficients 〈f, eν〉 occur early in the series. Then, picking weights wν which are near 1 for
small ν and near 0 for large ν we get a Windowed SVD reconstruction formula:

f̂w =
∑
ν

wνk
−1
ν [y, hν ]eν . (1.1)

Weights are chosen so that (wν/kν) ∈ `2. As the eigenvalues of the compact operator K∗K
tend to zero this weighting is necessary so that division by near-zero elements does not
prevent convergence of the series.

The windowed SVD method, at least theoretically, includes many other approaches to
inversion as special cases, simply by suitable choice of the window function wν ; see Bertero
(1989) for example. Thus, if we pick wν = k2

ν
k2
ν+λ

, we get the method of regularization; and
if we pick wν = (1− (1− µk2

ν)m) we get the m-th iterative damped backprojection [1].
The singular system decomposition has led to applications in a variety of fields. See

Bertero, De Mol, and Pike (1985) for a physics-oriented treatment, and Johnstone and
Silverman (1990, 1991) for a statistics-oriented example. In fact, the intensive work by
many researchers building an extensive edifice of SVD applications qualifies the SVD as a
paradigm for analyzing and solving linear inverse problems.

1.2 Limitations of SVD

Despite the great popularity of schemes based explicitly or implicitly on SVD, the method
suffers from performance limitations. These are rooted in the fact that the basis functions
(eν), (hν) derive from the operator under study, not from the object to be recovered. Thus,
if the same operator K occurs in two different fields of scientific inquiry, the basis functions
will be the same, even though the type of object to be recovered may be quite different
in the two fields. One can easily imagine that in one field of scientific inquiry the f to be
recovered could be very efficiently represented in terms of the basis set used; while in the
other area, the object is poorly approximated by finite sums of basis terms eν even when a
fairly large number of terms is used.

Efficient representation of the object f by singular functions eν is essential. Suppose
that (for definiteness) the object is observed in white noise, so that the observed singular
coefficient obeys

[y, hν ] = kνθν + εzν
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where (zν) is a Gaussian white noise sequence, ε is the noise level, and θν = 〈eν , f〉 is the
component of f in the direction eν . Then, if we use the best window (wν) possible for the
function under consideration we would have a mean-squared error within a factor of 2 of∑

ν

min(θ2
ν , k
−2
ν ε2), (1.2)

which we take as a proxy for the difficulty in recovering f . This expression shows that in
order to have accurate reconstructions, it is important that there be very few θν which are
large, and that those which are large be located at those components ν where kν is also
large.

In short, even when the SVD window (wν) is chosen optimally for the specific function
at hand, it is necessary for the coefficients (θν) to have a certain distribution of energy
in the singular system basis. Otherwise, the windowed SVD method will have poor MSE
properties.

In many realistic examples one does not have the desired agreement between the energy
distribution of the object and the decay of the singular values. Suppose we are considering
a two-dimensional inverse problem involving deconvolution, and suppose we impose circular
boundary condition so that the singular functions are known explicitly – they are sinusoids.
Suppose that the object to be recovered has a discontinuity along an smooth curve. Then
its Fourier coefficients θν typically decay as |ν| → ∞ only like 1/|ν|3/2, which is rather slow;
in consequence, the expression

∑
ν min(θ2

ν , k
−2
ν ε2) will tend to zero slowly with ε.

This is a general phenomenon, and continues outside the special case of deconvolution.
Whenever the object to be recovered has edges, and the SVD has sinusoidal structure, SVD-
based approaches – and cognate approaches such as damped backprojection and method of
regularization – will have trouble.

In many typical cases, SVD-based methods are nearly optimal among linear methods,
so we can infer that if the SVD-based methods have poor MSE properties, so will other
linear methods.

1.3 Ubiquity of Edges

Objects with discontinuities along edges arise in many important inverse problems arising
in imaging applications.

For example, in seismic inverse problems, the object to be recovered represents bulk
material properties as a function of depth, and so can be expected to change discontinuously
across layer boundaries. Geophysicists have used “layercake” models of the earth with
considerable success for many years.

In biomedical imaging, the object to be recovered might represent either the material
density or the metabolic activity as a function of space; discontinuities represent changes
in material/metabolic properties across organ boundaries. Biomedical imaging researchers
have used piecewise constant “phantoms” in evaluating their imaging algorithms for years,
with good success. They seem to regard piecewise constant imagery as a reasonable starting
model even today.

Notice that the typical model in such applications concentrates essentially all the in-
formation in the edges, and yet such edge-dominated objects are precisely the type caus-
ing problems for the standard SVD methods for reconstructing inverse problems. This
mismatch, as mentioned already above, is at the source of a considerable body of recent
research.
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1.4 An Alternate Strategy

The SVD focuses exclusively on properties of the forward operator rather than the object
to be recovered. In essence, it diagonalizes the forward operator. There is an interesting
alternative strategy. Using language from harmonic analysis, which we will now begin
to employ more and more heavily, the strategy is to develop a new decomposition which
is much better adapted to the type of edge-dominated object we need to recover while
providing an almost diagonal representation of the operator. Below we argue that such a
strategy may lead to algorithms which, for typical edge-dominated objects of interest, enjoy
dramatically lower MSE than the classical SVD approach.

In this article, we consider as a model problem a mathematical caricature of image
processing, the case where typical objects are functions of two variables with discontinuities
along edges and which are otherwise smooth. We develop decompositions of both the inverse
problem and the object to be recovered using a newly developed tool – frames of curvelets.
These new frames serve almost as well as the SVD for diagonalizing the forward operator
K of certain inverse problems, while doing much better for representing objects with edges.

We consider specifically the problem of noisy Radon inversion where the data are ob-
tained in the so called ‘white noise model’

Y (dt, dθ) = (Rf)(t, θ)dtdθ + εW (dt, dθ). (1.3)

Here R denotes the Radon transform, taking functions f(x1, x2) on R2 into functions
(Rf)(t, θ) on R × [−π, π) formed by integration along lines of codirection θ and distance
t from the origin; W (θ, t) denotes a Wiener sheet (i.e. the primitive of white noise); ε is
a noise level; and f is the object to be recovered. Over the last decade, the white noise
model has proven to be a fruitful theoretical tool. Although the model is continuous and
real data are typically discretely sampled, the asymptotic theory deriving from the white
noise model has typically been found to lead directly to comparable asymptotic theory in
a sampled data model. Without belaboring this point we can cite general theory [3, 55],
examples of the very clean derivations of optimal procedures possible in the white noise
model [58, 42, 57, 32, 24, 16, 18, 20, 27] and many successful applications of this principle
to sampled data [33, 34, 55, 31, 29, 17, 28]. (We are of course aware of [35]).

For some readers this model may seem initially rather remote; they may be helped by
the observation that what it really says is: each integral

∫
ν(t, θ)Y (dtdθ) of the observed

data Y is normally distributed with mean
∫
ν(t, θ)f(t, θ)dtdθ and variance ε2

∫
ν(t, θ)2dtdθ.

We develop an operator-biorthogonal decomposition of the Radon transform based on
curvelet frames. Using this decomposition, we propose a method that yields dramatic
benefits in asymptotic mean-squared error over previous approaches, and in fact a near-
optimality. In the remainder of the introduction we develop further background for stating
our result.

1.5 Objects with Singularities Along Curves

Suppose we have an object f supported in [0, 1]2 which is smooth away from a discontinuity
across a C2 curve. It is well-known that, in this setting, wavelets offer an improvement on
traditional representations like sinusoids, but wavelets are far from optimal.

To make this concrete, consider approximating such an f from the best m-terms in a
Fourier expansion adapted to [−π, π]2 (say). The squared error of such anm-term expansion
f̃Fm would obey

‖f − f̃Fm‖22 ³ m−1/2, m→∞. (1.4)
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For comparison, consider an approximation f̃Wm from the best m-terms in a wavelet expan-
sion; then

‖f − f̃Wm ‖22 ³ m−1, m→∞. (1.5)

which is considerably better. However, from [26, 21, 23] we know that there exist dictionar-
ies of (nonorthogonal) elements, and procedures for selecting from those dictionaries that
will yield m-term approximations obeying

‖f − f̃Dm‖22 ³ m−2, m→∞. (1.6)

The relative disadvantage of Fourier and wavelets methods for purposes of efficient
representation has an immediate counterpart in solving inverse problems. Suppose we have
data from the Radon transform with white noise, (1.3), again with a smooth f having a
discontinuity along a generic C2 curve. If we apply the SVD in this setting, we get the
result

MSE(Windowed SVD , f) ³ ε1/2, ε→ 0.

In recent work described further below, [18] proposed a wavelet-based method for solving
inverse problems of this kind, called the Wavelet-Vaguelette Decomposition. If we apply the
WVD in this setting – see also Section 9 below – we get an improvement over SVD:

MSE(Thresholded WVD , f) ³ ε2/3, ε→ 0.

However, results farther below in this paper establish that the minimax mean-squared-error
will in this setting be O(ε4/5−δ) for each δ > 0. Hence, when we consider inverse problems
involving otherwise smooth objects having discontinuities along edges, a representation
based on wavelets – though an improvement on linear/SVD methods – is substantially
suboptimal.

1.6 Sparse Representations by Curvelets

In recent work [9, 10], we introduced tight frames of curvelets, systems with the following
properties

• There is a collection (γµ) with µ running through a discrete index setM which makes
a tight frame for L2(R2). This means there is a reproducing formula

f =
∑
µ

〈f, γµ〉γµ

and a Parseval-type relation

‖f‖2L2(R2) =
∑
µ

|〈f, γµ〉|2.

• The setM has a seven-index structure µ = (s, k1, k2; j, k; i, `, ε) to be described below,
whose indices include parameters for scale, location, direction, and microlocation.

• The elements of the tight frame with substantial L2-norm obey a special “anisotropic
scaling law”: the width of the effective support of these elements is effectively propor-
tional to the length squared. The frame elements become successively more anisotropic
at progressively finer scales.
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• The number of distinct directions at a given scale grows as scale−1.

The last two properties are quite different from those of pre-existing multiscale representa-
tions such as wavelets, where the aspect ratios of basis/frame elements remain fixed as one
moves to finer scales and the number of distinct directions remains fixed also.

The construction is briefly reviewed in Section 2 below. Details of the construction and
heuristic insights are provided in [9, 10].

Our motivation leading to this construction (and to the choice of name) was the problem
of representing otherwise smooth objects which have a discontinuity along a C2 curve. In
[9] it is shown that if f has C2 smoothness away from a simple discontinuity along a C2

curve, the curvelet coefficients αµ = 〈f, γµ〉 obey∑
µ

|αµ|p <∞

for each p > 2/3. It follows from this and the tight frame property that for such f , m-term
curvelet approximations f̃Cm made using the m terms with biggest curvelet coefficients obey,
for each δ > 0,

‖f − f̃Cm‖2 ≤ Cδm−2+δ, m→∞.

Comparing with the results (1.4)-(1.6) we see that m-term approximations in the curvelet
frame are almost rate optimal, and in fact perform far better than m-term sinusoid or
wavelet approximations, in an asymptotic sense.

1.7 Operator-Biorthogonal Curvelet Decomposition

Obviously, the curvelet representation is far more effective in representing objects with
edges than wavelets or more traditional representations. Interestingly, curvelets also afford
an almost-diagonal representation of the Radon operator, or equivalently its Gram operator
R∗R.

The Operator-Biorthogonal Curvelet Decomposition (BCD) has the following ingredi-
ents – stated for a general operator K, of which the Radon operator R is a particular
case.

• We start with (γµ) a curvelet tight frame for L2(dx1dx2). This is intended to play
the part that was played in the SVD theory by the eigenfunctions (eν). In short,
curvelets are used in place of singular functions.

• Based on the forward operator K and our choice of (γµ), we obtain systems (Uµ) and
(Vµ) in L2(dtdθ).

• In fact the systems are generated according to the relations

Kγµ = κs · Vµ K∗Uµ = κs · γµ

Here, the scalars κs are defined by certain scaling properties of the operatorK, and are
called quasi-singular values; in effect they normalize the functionsKγµ and (K∗)−1γµ,
so that the systems (Uµ) and (Vµ) obey ‖Uµ‖ ³ 1, ‖Vµ‖ ³ 1 .

• The systems (Uµ) and (Vµ) obey the generalized biorthogonality relations

[Uµ, Vµ′ ] = 2s
′−s 〈γµ, γµ′〉.
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• The systems are frames: for (Uµ) we have(∑
µ

〈Uµ, g〉2
)1/2

³ ||g||L2(dtdθ)

‖
∑
µ

aµUµ‖2 ≤ C · ||(aµ)||`2 .

and similarly for (Vµ).

To summarize: the BCD may be viewed as an analog of the SVD in which curvelets play
the role of the eigenbasis eν dual curvelets Uµ and Vµ play the role of the dual functions
hν , and the κs play the role of approximate singular values.

An immediate consequence of the BCD construction is the reproducing formula,

f =
∑
µ

[Rf,Uµ]κ−1
s γµ, (1.7)

which makes sense for every f which is a finite linear combination of γµ’s. This shows that
the curvelet coefficient 〈γµ, f〉 can be obtained from noiseless Radon data Rf by simply
using the Uµ frame coefficient.

This formula directly associates behavior in the Radon domain with behavior in the
object domain. The Radon domain data are analyzed by a bank of functions (Uµ) and each
output coefficient scales a corresponding synthesized behavior γµ in the object domain.
Since the γµ correspond at fine scales to highly localized directionally-oriented elements,
the formula may be said at fine scales to be reading off the existence of edges at certain
locations and orientations in the object domain from behavior of the Radon transform.

1.8 Statistical Estimation

In the reproducing formula (1.7), the κs in (1.7) are tending to zero as s → ∞, so the
reproducing formula is very sensitive to the presence of nonzero terms at large values of s.
In particular, it would be rather foolish to use this formula as is on inaccurate data. For
dealing with noisy data, we propose a rule of the general form

f̂ =
∑
µ

δ([Y, Uµ]κ−1
s , ts)γµ,

where δ(·, t) is a scalar thresholding nonlinearity with threshold t, and ts are appropriate
scale-dependent thresholds.

This makes sense: because the curvelet transform has its big coefficients at unpredictable
locations (depending on the location of the edge curve), we cannot say a priori where the
‘important coefficients’ will be; therefore we apply thresholding.

We are able to obtain the following result for Radon inversion in the white noise model
(1.3). Suppose that f is compactly supported and C2 smooth away from a C2 curve. Then
for each δ > 0,

MSE(Thresholded BCD , f) = O(ε4/5−δ), ε→ 0. (1.8)

A heuristic explanation for the exponent 4/5 is given in Section 6 below.
As we have seen, linear SVD damping methods and nonlinear wavelet shrinkage methods

achieve MSE convergence rates O(ε1/2) and O(ε2/3) respectively. Thus the curvelet-based
approach to Radon inversion can substantially outperform existing methods.
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In fact we obtain a stronger result, valid uniformly over a class of such f . The proof is
given in Section 7. It follows from a lower bound we develop in Section 8 that no measurable
procedure can possibly achieve better than a result of order ε4/5 in this problem. The rate
result (1.8) is therefore essentially unimprovable for a class of otherwise smooth objects
with edges.

1.9 Contents

Section 2 below reviews the construction of Curvelets. Section 3 below constructs a stable
biorthogonal decomposition of the Laplacian based on Curvelets. Based on this, Section
4 constructs the operator-biorthogonal decomposition of the Radon transform. Section 5
interprets the resulting dual analyzing elements. Section 6 gives a heuristic indicating why
the 4/5 law may be expected to hold. Section 7 gives the proof of our main result, a
strengthening of (1.8). Section 8 proves that no result better than this can be expected,
uniformly over a class of objects with edges. Section 9 discusses generalizations, such
as to deconvolution problems; we believe that results of the kind proved here hold for a
wide variety of inverse problems. It also points out that despite the existence of a rather
voluminous literature on ‘edge-preserving methods’, no previously known methods seem to
approach the 4/5-law. Finally, proofs of key estimates supporting our main result are given
in Section 10.

2 Curvelet Construction

We now briefly discuss the curvelet frame; for more details, see [9] The construction com-
bines several ingredients, which we briefly review

• Ridgelets, a method of analysis very suitable for objects which are discontinuous across
straight lines.

• Multiscale Ridgelets, a pyramid of analyzing elements which consists of ridgelets renor-
malized and transported to a wide range of scales and locations.

• Bandpass Filtering, a method of separating an object out into a series of disjoint
scales.

We briefly describe each component in turn, and then their combination. There is a differ-
ence between this construction and the one given in [9] at large scales.

2.1 Ridgelets

The theory of ridgelets was developed in the Ph.D. Thesis of Emmanuel Candès (1998).
In that work, Candès showed that one could develop a system of analysis based on ridge
functions

ψa,b,θ(x1, x2) = a−1/2ψ((x1 cos(θ) + x2 sin(θ)− b)/a). (2.1)

He introduced a continuous ridgelet transformRf (a, b, θ) = 〈ψa,b,θ(x), f〉 with a reproducing
formula and a Parseval relation. He showed how to construct frames, giving stable series
expansions in terms of a special discrete collection of ridge functions. The approach was
general, and gave ridgelet frames for functions in L2[0, 1]d in all dimensions d ≥ 2 – For
further developments, see [7, 8].
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[22] showed that in two dimensions, by heeding the sampling pattern underlying the
ridgelet frame, one could develop an orthonormal set for L2(R2) having the same appli-
cations as the original ridgelets. The ortho ridgelets are indexed using λ = (j, k, i, `, ε),
where j indexes the ridge scale, k the ridge location, i the angular scale, and ` the angular
location; ε is a gender token. Roughly speaking, the ortho ridgelets look like pieces of
ridgelets (2.1) which are windowed to lie in discs of radius about 2i; θi,` = `/2i is roughly
the orientation parameter, and 2−j is roughly the thickness.

A formula for ortho ridgelets can be given in the frequency domain

ρ̂λ(ξ) = |ξ|− 1
2 (ψ̂j,k(|ξ|)wεi,`(θ) + ψ̂j,k(−|ξ|)wεi,`(θ + π))/2 . (2.2)

Here the ψj,k are Meyer wavelets for R [50, 53], wεi,` are periodic wavelets for [−π, π), indices
run as follows: j, k ∈ Z, ` = 0, . . . , 2i−1 − 1; i ≥ i0, and, if ε = 0, i = max(i0, j), while if
ε = 1, i ≥ max(i0, j). Notice the restrictions on the range of i, `. Let Λ denote the set of
all such indices λ.

2.2 Multiscale Ridgelets

Think of ortho ridgelets as objects which have a “length” of about 1 and a “width” which
can be arbitrarily fine. The multiscale ridgelet system renormalizes and transports such
objects, so that one has a system of elements at all lengths and all finer widths.

The construction begins with a smooth partition of energy function w(x1, x2) ≥ 0,
w ∈ C∞0 ([−1, 1]2) obeying

∑
k1,k2

w2(x1 − k1, x2 − k2) ≡ 1. Define a transport operator,
so that with index Q indicating a dyadic square Q = (s, k1, k2) of the form [k1/2s, (k1 +
1)/2s) × [k2/2s, (k2 + 1)/2s), by (TQf)(x1, x2) = f(2sx1 − k1, 2sx2 − k2). The Multiscale
Ridgelet with index µ = (Q,λ) is then

ψµ = 2s · TQ(w · ρλ)

In short, one transports the normalized, windowed orthoridgelet.
Letting Qs denote the dyadic squares of side 2−s, we can define the subcollection of

Monoscale Ridgelets at scale s:

Ms = {(Q,λ) : Q ∈ Qs, λ ∈ Λ}

It is immediate from the orthonormality of the ridgelets that each system of monoscale
ridgelets makes tight frame, in particular obeying the Parseval relation∑

µ∈Ms

〈ψµ, f〉2 = ‖f‖2L2

It follows that the dictionary of multiscale ridgelets at all scales, indexed by

M = ∪s≥1Ms

is not frameable, as we have energy blow-up:∑
µ∈M
〈ψµ, f〉2 =∞. (2.3)

The Multiscale Ridgelets dictionary is simply too massive to form a good analyzing set. It
lacks inter-scale orthogonality – ψ(Q,λ) is not typically orthogonal to ψ(Q′,λ′) if Q and Q′
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are squares at different scales and overlapping locations. In analyzing a function using this
dictionary, the repeated interactions with all different scales causes energy blow-up (2.3).

The construction of curvelets solves this problem by in effect disallowing the full richness
of the Multiscale Ridgelets dictionary. Instead of allowing all different combinations of
‘lengths’ and ‘widths’, we allow only those where width ≈ length2.

2.3 Subband Filtering

Our remedy to the ‘energy blow-up’ (2.3) is to decompose f into subbands using standard
filterbank ideas. Then we assign one specific monoscale dictionary Ms to analyze one
specific (and specially chosen) subband.

We define coronae of frequencies |ξ| ∈ [22s, 22s+2], and subband filters Ds extracting
components of f in the indicated subbands; a filter P0 deals with frequencies |ξ| ≤ 1. The
filters decompose the energy exactly into subbands:

‖f‖22 = ‖P0f‖22 +
∑
s

‖Dsf‖22.

The construction of such operators is standard [64]; the coronization oriented around powers
22s is nonstandard – and essential for us. Explicitly, we build a sequence of filters Φ0

and Ψ2s = 24sΨ(22s·), s = 0, 1, 2, . . . with the following properties: Φ0 is a lowpass filter
concentrated near frequencies |ξ| ≤ 1; Ψ2s is bandpass, concentrated near |ξ| ∈ [22s, 22s+2];
and we have

|Φ̂0(ξ)|2 +
∑
s≥0

|Ψ̂(2−2sξ)|2 = 1, ∀ξ.

Hence, Ds is simply the convolution operator Dsf = Ψ2s ∗ f .

2.4 Definition of Curvelet Transform

Assembling the above ingredients, we are able to sketch the definition of the Curvelet
transform. We let M ′ consist of M merged with the collection of integral triples (s, k1, k2, ε)
where s ≤ 0, ε ∈ {0, 1}, indexing all dyadic squares in the plane of side 2s > 1.

The curvelet transform is a map L2(R2) 7→ `2(M ′), yielding Curvelet coefficients (αµ :
µ ∈M ′). These come in two types.

At coarse scales we have wavelet coefficients.

αµ = 〈Ws,k1,k2,ε, P0f〉, µ = (s, k1, k2) ∈M ′\M

where each Ws,k1,k2,ε is a Meyer wavelet, while at fine scale we have Multiscale Ridgelet
coefficients of the bandpass filtered object:

αµ = 〈Dsf, ψµ〉, µ ∈Ms, s = 1, 2, . . . .

Note well that for s > 0, each coefficient associated to scale 2−s derives from the subband
filtered version of f – Dsf – and not from f .

Several properties are immediate;

• Tight Frame:
‖f‖22 =

∑
µ∈M ′

|αµ|2.
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• Existence of Coefficient Representers (Frame Elements): There are γµ ∈ L2(R2) so
that

αµ ≡ 〈f, γµ〉.

• L2 Reconstruction Formula:
f =

∑
µ∈M ′

〈f, γµ〉γµ.

• Formula for Frame Elements: for s ≤ 0, γµ = P0φs,k1,k2 , while for s > 0,

γµ = Dsψµ, µ ∈ Qs. (2.4)

In short, fine-scale curvelets are obtained by bandpass filtering of Multiscale Ridgelets
coefficients where the passband is rigidly linked to the scale of spatial localization.

• Anisotropy Scaling Law: By linking the filter passband |ξ| ≈ 22s to the scale of
spatial localization 2−s imposes that (1) most curvelets are negligible in norm (most
multiscale ridgelets do not survive the bandpass filtering Ds); (2) the nonnegligible
curvelets obey length ≈ 2−s while width ≈ 2−2s. In short, the system obeys approx-
imately the scaling relationship

width ≈ length2.

Note: it is at this last step that our 22s coronization scheme comes fully into play.

• Oscillatory Nature. Both for s > 0 and s ≤ 0, each frame element has a Fourier
transform supported in an annulus away from 0.

3 Powers of the Laplacian

It is well-known that the Radon transform is intimately involved with certain homogeneous
Fourier multiplier operators often called “fractional powers of the Laplacian”. In this
section, we study the decomposition of such operators by the curvelet frame.

Now the usual Laplacian ∆ =
∑2
i=1

δ2

δx2
i

corresponds to the Fourier multiplier (∆f )̂ (ξ) =

−|ξ|2 · f̂(ξ); it makes sense therefore to define the α-power of the Laplacian by

((−∆)αf )̂ (ξ) = |ξ|2α · f̂(ξ).

Define now, for a curvelet γµ(x1, x2), two companions γ±µ (x1, x2) according to

γ±µ = 2∓s(−∆)±1/4γµ,

where of course s refers to the scale index occupying the first slot (s, k1, k2, j, k, i, `, ε) in
the curvelet index µ. Because γµ is effectively concentrated in the frequency domain near
|ξ| ≈ 22s, we have 22s|ξ| ≈ 1 through the bulk of the frequency domain support of γµ and
hence we anticipate ‖γ±µ ‖ ≈ ‖γµ‖.

Theorem 1 The systems (γ+
µ )µ∈M and (γ−µ )µ∈M are frames for L2(R2): either (fixed)

choice of sign ± gives a system with `2 stable synthesis

‖
∑
µ

aµγ
±
µ ‖2 ≤ C · (

∑
µ

a2
µ)1/2, ∀ (aµ) ∈ `2, (3.1)
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and L2 norm equivalence

‖
∑
µ

〈f, γ±µ 〉‖2 ³ ‖f‖2, ∀ f ∈ L2(R). (3.2)

Moreover, the two systems are quasi-biorthogonal:

〈γ+
µ , γ

−
µ′〉 = 2s

′−s〈γµ, γµ′〉, µ, µ′ ∈M. (3.3)

where 〈γµ, γµ′〉 is the reproducing kernel of the curvelet tight frame.

Proof. We first consider (3.3). Passing to the frequency domain, we have∫
γ̂+
µ (ξ)γ̂−µ′(ξ)dξ =

∫
2−s|ξ|1/2 · γ̂µ(ξ) · 2s

′ |ξ|−1/2 · γ̂µ′(ξ)dξ.

Canceling the offsetting |ξ|- multipliers gives

〈γ+
µ , γ

−
µ′〉 = 2s

′−s · 〈γµ, γµ′〉

and we note that 〈γµ, γµ′〉 = 0 unless |s − s′| ≤ 1, completing the proof of (3.3). The
rapid decay of the curvelet frame Gram matrix 〈γµ, γµ′〉 justifies the terminology ‘quasi-
biorthogonal.’

We now turn to the norm equivalence (3.2). Let ŵs(ξ) be a real-valued smooth radial
window supported in Ξs−2 ∪ . . .∪Ξs+2 which is equal to one on ξ ∈ Ξs−1 ∪Ξs ∪Ξs+1. This
implies that

ŵs(ξ) = 1 on supp(Ψ̂2s), (3.4)

which will be crucial below. Let ws denote the inverse Fourier transform of ŵs. Now define

fs = ws ? f,

which is a C∞ function, so that

hs = 2−s · (−∆)1/4fs

is well-defined. We have the key identity

〈γµ, hs〉 = 〈c+µ , f〉.

Moreover, if Ds denotes the bandpass operator introduced in Section 2,

‖Dshs‖22 =
∫
|Ψ̂2s(ξ)|2|ĥs(ξ)|2dξ

=
∫
|Ψ̂2s(ξ)|2 ·

(
2−s · |ξ|1/2 · |f̂(ξ)|

)2
dξ

= 2−2s
∫

Ξs
|ξ| · |Ψ̂2s(ξ)f̂(ξ)|2dξ,

where in the first step we used (3.4), which gives

ŵs(ξ) · Ψ̂2s(ξ) = Ψ̂2s(ξ), ξ ∈ R2.

Now for constants ci > 0 not depending on s,

c1 ·min{|ξ| : |ξ| ∈ Ξs} ≤ 22s ≤ c2 ·max{|ξ| : |ξ| ∈ Ξs},
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so that with constants not depending on s:

2−2s
∫

Ξs
|ξ| · |Ψ̂2s(ξ)f̂(ξ)|2dξ ³

∫
Ξs
|Ψ̂2s(ξ)f̂(ξ)|2dξ.

It follows that
‖Dshs‖22 ³ ‖fs‖22,

with constants not depending on s. Hence, with Ms the collection of µ with s in the first
slot, ∑

µ∈Ms

〈γ+
µ , f〉2 =

∑
µ∈Ms

〈γµ, hs〉2

= ‖Dshs‖22
³ ‖fs‖22,

with the next-to-last step following by the tight frame property of γµ. Here the constants
of equivalence in the last step can be taken independent of s. The result (3.2) now follows
by summing across s.

There are two ways to prove the remaining assertion, (3.1). On the one hand, one can
proceed concretely, using arguments reminiscent of (3.2). On the other hand, there is an
abstract argument. For variety, we take the abstract approach.

It is known in the Theory of Frames that the stable synthesis property (3.1), (a.k.a.
Bessel property), follows from the L2 norm equivalence (3.2); (see [11] for details). A
general result in that Theory says that if a general collection (ϕn) of L2 functions obeys
the norm equivalence ∑

n

|〈f, ϕn〉|2 ³ ‖f‖22,

with positive constants not depending on f , then there exists a dual collection ϕ̃n also with
the property ∑

n

|〈f, ϕ̃n〉|2 ³ ‖f‖22,

with implied constants not depending on f , and a reconstruction formula

f =
∑
n

〈f, ϕ̃n〉ϕn,

with equality holding in the sense of unconditional L2 convergence of the right hand side
to the left hand side. Moreover, the dual collection ϕ̃n can be chosen so that for any f ,∑

n

|〈f, ϕ̃n〉|2 = min{
∑
n

|an|2, f =
∑
n

anϕn}.

In a moment we will see that the above equivalences imply

‖
∑
n

anϕn‖2 ≤ C (
∑
n

|an|2)1/2; (3.5)

this will complete the abstract argument for obtaining (3.1) from (3.2). Let’s see why (3.5)
holds. For f =

∑
n anϕn we have

‖f‖ ³
(∑

n

|〈f, ϕ̃n〉|2
)1/2

≤ min{(
∑
n

|a′n|2)1/2 : f =
∑
n

a′nϕn}

≤ (
∑
n

|an|2)1/2.
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The last step follows because, although there may be many ways to synthesize f from
appropriate coefficients (a′n), one particular way is given by the (an) (by hypothesis).

We make a useful remark about the regularity of the γ±µ :

Lemma 1 The γ±µ are smooth and of rapid decay, together with all their derivatives.

Proof. By the explicit formula (2.4) we know that in the frequency domain, the γ̂µ(ξ)
are compactly supported in an annular region omitting the origin, and are C∞. The γ̂±µ (ξ)
are obtained by multiplication with a function that is C∞ away from the origin. Hence
the support of the γ̂±µ is the same annulus as the corresponding γ̂µ and on this support,
by application of the Leibnitz rule, we can obtain bounds on derivatives of all orders.
These Fourier-domain conditions imply corresponding space-domain conditions and prove
the lemma.

4 BCD for Radon Transform

We now establish the existence of a biorthogonal decomposition of the Radon transform
operator driven by the curvelet frame. It is constructed in a fashion reminiscent of the
WVD in [18], only using curvelets in place of wavelets.

We begin by recalling to the reader’s attention the Radon Isometry see Helgason [41].
For a smooth function f(x) = f(x1, x2) of rapid decay, let Rf denote the Radon trans-

form of f , the integral along a line L(θ,t), expressed using the Dirac mass δ as

(Rf)(t, θ) =
∫
f(x)δ(x1 cos θ + x2 sin θ − t) dx , (4.1)

where we permit θ ∈ [0, 2π) and t ∈ IR. For more information about the Radon transform
see for example [13, 41]. Observe that the line L(θ,t) is identical to the line L(θ+π,−t). As a
result, Rf has the antipodal symmetry

(Rf)(−t, θ + π) = (Rf)(t, θ) . (4.2)

We let R denote the space of all functions in L2(dtdθ) with this symmetry.
Define now the operator 2α for fractional differentiation of functions of a single variable

via
(2αf)(t) =

1
2π

∫ ∞
−∞
|ω|α2 f̂(ω) eiωtdω,

with 2 short for 21. The Radon Isometry is then defined by

R̃ = (2⊗ I) ◦R;

it can be well-defined on L2 functions. On all such functions it is an L2 isometry:

[R̃f, R̃g] = 〈f, g〉,

thanks to the Fourier isometry 〈f̂ , ĝ〉. Moreover, R̃ maps the C∞(R2) functions of rapid
decay whose Fourier transforms vanish in the vicinity of the origin into C∞(R × [0, 2π))
functions of rapid decay in t.
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Theorem 2 Define systems (Uµ) and (Vµ) via Uµ = R̃γ+
µ , µ ∈M and Vµ = R̃γ−µ , µ ∈M.

These are frames for R ⊂ L2(dtdθ): the system (Uµ) exhibits the almost-orthogonality
property:

‖
∑
µ

aµUµ‖2 ≤ C · (
∑
µ

a2
µ)1/2, ∀ a ∈ `2, (4.3)

and the L2 norm equivalence property∑
µ

〈g, Uµ〉2 ³ ‖g‖2L2(dtdθ) ∀ g ∈ R ⊂ L2(dtdθ); (4.4)

and similarly for (Vµ). The two systems are quasi-biorthogonal

[Vµ, Uµ′ ] = 2s−s
′ · 〈γµ, γµ′〉, µ, µ′ ∈M. (4.5)

Put now κs = 2−s. Then R has a biorthogonal decomposition

Rf =
∑
µ

〈f, γµ〉κsVµ (4.6)

and its adjoint R∗ has decomposition

R∗g =
∑
µ

[g, Uµ]κsγµ. (4.7)

Proof. Relations (4.3)-(4.5) are applications of Radon Isometry. Consider (4.3). The
isometry combined with Theorem 1 gives

‖
∑
µ

aµUµ‖2 = ‖
∑
µ

aµγ
+
µ ‖2

≤ C · (
∑
µ

a2
µ)1/2,

establishing the almost-orthogonality (4.3), with a similar argument for (Vµ).
Consider (4.5). Using the isometry property of R̃, we have

[Vµ, Uµ′ ] = [R̃γ−µ , R̃γ
+
µ′ ]

= 〈γ−µ , γ+
µ′〉

= 〈γµ, γµ′〉 · 2s−s
′
,

which gives (4.5).
Consider finally (4.4). For those g arising as R̃f , with f a finite sum of γ−µ ’s, we have∑

µ

[Uµ, g]2 =
∑
µ

[R̃γ+
µ ,
∑
µ′
αµ′R̃γ

−
µ′ ]

2

=
∑
µ

〈γ+
µ ,
∑
µ′
αµ′γ

−
µ′〉

2

³ ‖
∑
µ′
αµ′γ

−
µ′‖

2
L2(dx1dx2),

= ‖g‖2L2(dtdθ);
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the first step by Radon isometry, the second step by (3.1) — with constants of equivalence
not depending on g — and the final step by definition of g and Radon isometry. As R can
be shown to be the L2 closure of all finite sums of R̃γ−µ , (4.4) follows.

An alternate formula for the frames can be given. Start from the well-known intertwin-
ing relation

R ◦ (−∆)α = (24α ⊗ I) ◦R (4.8)

exhibiting a relationship between fractional powers of the Laplacian in the plane R2 and
fractional differentiation along the t-direction in the Radon domain [41]. Then we have

R̃γ+
µ = 2−s · (2⊗ I)R(−∆)1/4γµ = 2−s(22 ⊗ I)Rγµ, µ ∈M.

In short
Uµ = 2−s · (22 ⊗ I)Rγµ, µ ∈M,

and similarly
R̃γ−µ = 2s · (2⊗ I)R(−∆)−1/4γµ = 2sRγµ, µ ∈M.

so that
Vµ = 2s ·Rγµ, µ ∈M,

The operator decompositions (4.6)-(4.7) follow immediately.

Theorem 3 We have the reproducing formula

f =
∑
µ

[Rf,Uµ]κ−1
s γµ, (4.9)

valid for all f which are finite sums of γµ’s.

Proof. Using the intertwining relation (4.8) from the proof of Theorem 2, one sees
immediately that

[Uµ, Rf ] = κs · [(2⊗ I) ◦ R̃γµ, Rf ]
= κs · [R̃γµ, (2⊗ I) ◦Rf ]
= κs · [R̃γµ, R̃f ]
= κs · 〈γµ, f〉.

In short the curvelet coefficients of f are available from the Uµ-based coefficients of Rf .
The relation (4.9) follows immediately.

In short, f can be obtained from (noiseless, continuous) Radon domain information.
However, owing to the κ−1

s = 2s factor this is ill-posed.

Lemma 2 The functions Uµ(t, θ) and Vµ(t, θ) are C∞ on R × [0, 2π) and of rapid decay
in t.

Proof. The argument is essentially the same as Lemma 1’s argument for the regularity
of γ±µ .
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Figure 1: Correspondence between spatial domain and Radon domain. A curvelet localized
near x0 = (x0,1, x0,2) in the spatial domain and oriented in direction θ0, corresponds to a
dual curvelet localized near (t0, θ0) in the Radon domain oriented with slope u0. (τ0 is the
direction, in radians, corresponding to slope u0.)

5 Geometry Underlying the Reproducing Formula

The last section built dual frames (Uµ) and (Vµ) for the Radon domain R ⊂ L2(dtdθ).
These give a new system of almost-orthogonal analysis and synthesis of ‘sinograms’. They
can be viewed as a new set of “features” in analysis of Radon data.

Because of their role in the BCD, they are the Radon-domain features that are the most
efficiently analyzed and detected by the methods we develop here. These Radon-domain
features are reminiscent of curvelets. They are, at fine scales, highly localized and highly
anisotropic.

The BCD associated these features in a one-to-one fashion with curvelets in the original
spatial domain, via the reproducing formula (4.9). Conceptually, the reproducing formula
performs a kind of edge detection in the Radon domain noting the position and orientation,
and the correspondence with curvelets in the space domain allows reconstruction of specific
edges at specific positions and orientations in the original domain.

The correspondence between curvelets and dual curvelets as given in the reproducing
formula has, at fine scales, an explicit geometric description. Roughly speaking, the curvelet
localized near spatial position x0 and direction θ0 corresponds to a dual curvelet localized
in the Radon plane at (t0, θ0) and with direction τ0, where

t0(x0, θ0) = x0,1 cos(θ0) + x0,2 sin(θ0) (5.1)

and
τ0(x0, θ0) = tan−1 [−x0,1 sin(θ0) + x0,2 cos(θ0)] (5.2)

We illustrate this correspondence in the diagram below:
We state without proof a formal result about this correspondence.
Definition. (Joint Localization in Real Space) Suppose we have a sequence (fn)

of functions in L2(R2); we say that the joint location/orientation of fn converges to (x0, θ0)
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if the space-support of fn converges to x0, in the sense that for each m > 0,∫
|x− x0|m|fn|2(x)dx→ 0, as n→∞ (5.3)

and if the direction support of fn converges to θ0, in the sense that for each m > 0, the
Fourier-domain integral∫ 2π

0

∫ ∞
0

sin(θ − θ0)2m|f̂n(ξ(r, θ))|2rdrdθ → 0, as n→∞. (5.4)

Definition. (Joint Localization in Radon Space) Suppose we have a sequence (Fn)
of functions in R ⊂ L2(dtdθ); we say that the joint location/orientation of Fn converges to
to ((t1, θ1), τ1) if, when we take any smooth window w supported in the vicinity of (t0, θ0),
and form the windowed extension to a function on R2,

fn(x1, x2) =

{
w(x1, x2) · Fn(x1, x2) (x1, x2) ∈ support(w)
0 else

,

the induced sequence (fn) ⊂ L2(R2) has joint location/orientation converging to x0 =
(t1, θ1) and θ0 = τ1 in the sense of the L2(R2) definition (5.3)-(5.4).

Theorem 4 Choose a sequence µn = (Qn, λn) of curvelet indices so that

d(Qn, x0)→ 0, n→∞,

and
d(2π`/2i, θ0)→ 0, n→∞.

Then:

(a) The joint location/orientation of γµn converges to (x0, θ0)

(b) The joint location/orientation of Uµn converges to ((t0, θ0), τ0), where t0, τ0 are defined
in (5.1)-(5.2).

6 Thresholding with Noisy Data

Suppose now that we observe Radon-domain data according to the white noise model (1.3).
Our goal in this section is to set up some basic terminology and point of view and to explain
heuristically the main stages leading to our main result.

6.1 Analysis of Radon data in White Noise

Assume we have data (1.3). Define empirical coefficients

yµ = [Y, Uµ] ≡
∫
Uµ(t, θ)Y (dtdθ).

These obey the Gaussian model

yµ = [Rf,Uµ] + ε[W,Uµ]. (6.1)
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Letting αµ denote the curvelet coefficient 〈f, γµ〉, then from the relation [Rf,Uµ] = κs〈f, γµ〉
we can rewrite (6.1) as

yµ = κsαµ + εnµ (6.2)

where κs denotes the quasi-singular value, αµ is the noiseless curvelet coefficient from direct
observation of f , and nµ ∼ N(0, ‖γ+

µ ‖22) is a (non-i.i.d.) Gaussian noise. In short, using the
Uµ system turns a continuum white noise model into a discrete sequence model.

Suppose now that we can construct an estimator α̂ = (α̂µ)µ for the sequence α. Then
for the function estimator f̂ =

∑
µ α̂µγµ we have, by the tight frame property,

E‖f̂ − f‖2L2(R2) ≤ E‖α̂− α‖2`2 . (6.3)

(This follows from completeness and fact that ‖∑µ aµγµ‖22 ≤
∑
µ |aµ|2.) In short, esti-

mation error in the curvelet domain controls the estimation error in the original spatial
domain. Our strategy is to exploit this fact, and develop estimators in sequence space,
knowing that comparable results follow in the continuum model.

This model is similar to models studied in [18, 19, 25] which take the form

yµ = κsαµ + εzµ, (6.4)

where now zµ is a standard Gaussian white noise so that noise values zµ, zµ are independent
for µ 6= µ′, and the noise is homoscedastic: V ar(zµ) = V ar(zµ′) for all µ, µ′. In fact,
arguments in [18, 19], combined with (6.3) show that, with the proper recalibration using
different ε in each of the two models, results on estimation in the sequence space white noise
model (6.4) yield upper bounds on estimation in the model (6.2). See also the discussion
in [45].

6.2 Thresholding in the White Noise Model

We now briefly mention some existing work on thresholding which will help us to quickly
get a rough idea of the mean squared error properties of thresholding estimators in the
white noise model. The work in [18, 19] suggests one construct estimators in model (6.4)
using simple level-dependent thresholding rules.

We begin with a useful heuristic hypothesis. We suppose for the moment that at each
level s:

• There are effectively only Ms coefficients among the (αµ : µ ∈ Ms) which can be
possibly be nonzero. We suppose that Ms = O(2s). We will discuss the basis of this
heuristic in the next subsection.

• The nonzero coefficients belong to a subset Ns of (αµ : µ ∈ Ms) which is known
a priori and whose cardinality Ns obeys Ns = O(24s). The basis of this heuristic
will also become apparent in a later section. We will refer to Ns as the number of
potentially nonzero coefficients.

To summarize, at each level s we have a subset Ns of Ns coefficients that can potentially
be nonzero out of which a maximum of Ms coefficients are effectively nonzero. We do not
the location of the nonzero coefficients ahead of time.

Level-dependent thresholding rules take the form

α̂µ = δ(yµ · κ−1
s , ts), µ ∈M,
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where ts is a level-dependent threshold. A choice which has been well-studied in the wavelet
setting is to take the threshold at a given level of the expansion to be a certain multiple
of the standard error of the underlying statistic, the multiple being determined by the
logarithm of the number Ns of potentially nonzero terms at that level of the expansion.
This leads to the proposal

ts =
√

2 log(Ns) · κ−1
s · ε.

The oracle inequality [25] gives for µ ∈ Ns

E(α̂µ − αµ)2 ≤ (2 log(Ns) + 1) · (min(α2
µ, κ
−2
s · ε2) + (κ−2

s · ε2)/Ns). (6.5)

Of course, for µ ∈Ms\Ns, αµ is known to be zero and, hence, putting Ls = (2 log(Ns)+1),
the oracle inequality (6.5) gives a total error (across all levels) bounded by

E‖α̂− α‖2`2 ≤
∑
s

Ls

κ−2
s ε2 +

∑
µ∈Ms

min(α2
µ, κ
−2
s · ε2)


Ignoring for the moment the logarithmic factor Ls and the term ε2κ−2

s immediately inside
brackets, we focus attention on the expression∑

s

∑
µ∈Ms

min(α2
µ, κ
−2
s · ε2). (6.6)

This acts as proxy for the mean-squared error of estimation of a threshold estimator; in
studies [25, 19] it has been shown that its behavior mimics, to within logarithmic factors,
the true mean-squared error of estimation.

6.3 Functions which are C2 Away from C2 Edges

We now formally specify a class of objects with discontinuities along edges; our notation
and exposition are taken from [21, 26, 23]; related models were introduced some time ago in
the mathematical statistics literature by [48, 49]. It is clear that nothing in the arguments
below would depend on the specific assumptions we make here, but the precision allows us
to make our arguments uniform over classes of such objects.

A star-shaped set B ⊂ [0, 1]2 has an origin b0 ∈ [0, 1]2 from which every point of B is
‘visible’; i.e. such that the line segment {(1 − t)b0 + tb : t ∈ [0, 1]} ⊂ B whenever b ∈ B.
This geometrical regularity is useful; it forces very simple interactions of the boundary with
dyadic squares at sufficiently fine scales. We use this to guarantee that ‘sufficiently fine’
has a uniform meaning for every B of interest.

We define Star
2(A), a class of star-shaped sets with 2-smooth boundaries, by imposing

regularity on the boundaries using a kind of polar coordinate system. Let ρ(θ) : [0, 2π) →
[0, 1] be a radius function and b0 = (x1,0, x2,0) be an origin with respect to which the set
of interest in star-shaped. Define ∆1(x) = x1 − x1,0 and ∆2(x) = x2 − x2,0; then define
functions θ(x1, x2) and r(x1, x2) by

θ = tan−1(−∆2/∆1); r = ((∆1)2 + (∆2)2)1/2.

For a starshaped set, we have (x1, x2) ∈ B iff 0 ≤ r ≤ ρ(θ). In particular, the boundary
∂B is given by the curve

β(θ) = (ρ(θ) cos(θ) + x1,0, ρ(θ) sin(θ) + x2,0) (6.7)
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θ

ρ

b0

Figure 2: Typical Star-Shaped Set, and associated notation.

Figure 2 gives a graphical indication of some of the objects just described.
The class Star

2(A) of interest to us can now be defined by

Star
2(A) = {B : B ⊂ [

1
10
,

9
10

]2,
1
10
≤ ρ(θ) ≤ 1

2
θ ∈ [0, 2π), ρ ∈ Hölder

2(A)}.

Here the condition ρ ∈ Hölder
2(A) means that ρ is continuously differentiable and

|ρ′(θ)− ρ′(θ′)| ≤ A · |θ − θ′|, θ, θ′ ∈ [0, 2π).

The actual objects of interest to us are functions which are twice continuously differen-
tiable except for discontinuities along edges ∂B of star-shaped sets. We define C2

0 (A) to be
the collection of twice continuously differentiable functions supported strictly inside [0, 1]2.

Definition. Let E2(A) denote the collection of functions f on R2 which are supported
in the square [0, 1]2 and obey

f = f1 + f2 · 1B (6.8)

where B ∈ Star
2(A) , and each fi ∈ C2

0 (A). We speak of E2(A) as consisting of functions

which are C2
away from a C2

edge.

6.4 The 4/5 exponent – Heuristic Argument

We now consider the risk proxy (6.6) more carefully.
We want to refine now our assumptions about the behavior of the curvelet coefficients.

• We recall the assumptionMs = O(2s). The underlying motivation is the fact that aC2

curve of finite length intersects only O(2s) dyadic boxes of side 2−s. The assumption is
therefore effectively saying that, in forming the curvelet coefficients, at most O(2s) of
the dyadic squares Q ∈ Qs interact with the discontinuity, each one of those squares
has only a few nonzero coefficients, and the coefficients from all other squares are
trivial at fine scales.
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• We now estimate the size of the coefficients αµ. In essence, the underlying curvelet
frame elements are supported in a region of size 2−s by 2−2s. They are L2-normalized,
so that ‖γµ‖ ≤ 1. They therefore obey

‖γµ‖1 ≤ C · 2−3/2s ∀µ.

The function f is bounded, so that the nonzero coefficients obey

|αµ| ≤ ‖γµ‖1 · ‖f‖∞ ≤ C ′ · 2−3/2s.

If we now consider a component of the sum (6.6) at one level s, we have∑
µ∈Ms

min(α2
µ, κ
−2
s · ε2) ≤ Ms ·min(C2−3s, 22sε2)

≤ C ′ · 2s min(C2−3s, 22sε2)

Now the right hand side is largest when s takes the continuum value s∗ satisfying

C2−2s∗ = 23s∗ε2.

Simplifying matters so that C = 1, we have

2−s
∗

= ε2/5.

Now the worst level s+ will occur at either bs∗c or ds∗e; at this level∑
µ∈Ms+

min(α2
µ, κ
−2
s · ε2) ≤ C ′′ · ε4/5.

We see that as the level s moves away from s+, the corresponding sum decays rapidly, so
that the sum across levels – (6.6) – is bounded by C ′′′ · ε4/5.

6.5 Necessary Refinements

The above arguments give the central organizational ideas which drive our proof of the
main result, but there are several ways that they distort the situation.

• The assumptions about the number Ms = O(2s) of coefficients that are nonzero which
are known to belong to a set Ns –known a priori– of cardinality Ns = O(24s). This is
not accurate, since strictly speaking there are a countable number of nonzero coeffi-
cients associated with each level of the transform – only most of these are very small
compared to any realistic noise level. A valid proof must articulate this fact math-
ematically and establish the needed approximate notion to replace the assumptions
on Ms and Ns.

• The noise is heteroscedastic, which actually should be exploited, by using a non-
uniform threshold within each level.

• The object is supported in a known region of the plane, which also should be exploited
in the thresholding scheme.
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7 Main Result

We now formally define a curvelet-based reconstruction method and state a result giving
the 4/5 rate of convergence. To obtain a relatively simple proof, we first modify the notion
of curvelet expansion. We then deploy this modified expansion in an estimation scheme
based on applying threshold to a subset of the noisy dual curvelet coefficients. We then
give the basic analysis supporting our Theorem. Certain key estimates are relegated to the
appendix.

7.1 Inhomogeneous Curvelet Expansions

The curvelet frame as discussed so far contains elements with support of all sizes, from
the very coarse to the very fine. This has been appropriate for developing theoretical
decompositions of the Laplacian, and the Radon transform, because those operators possess
a certain scale-invariance. However, for imaging applications, there is generally a coarsest
scale in an image, of size comparable to the largest object in the image. We now introduce
a coarsest scale, and form an inhomogeneous curvelet decomposition.

The inhomogeneous curvelets will be indexed by µ ranging through a set N which we
partition into two sets: N = N 0 ∪N 1, corresponding to coarse and fine scales. For a fixed
s0 ≥ 0, the fine scale coefficients are indexed by precisely the same scheme as the previous
curvelet expansion at all scales finer than s0:

N 1 = ∪s≥s0Ms;

the coarse scale coefficients µ ∈ N 0 are modeled on the indexing of squares Q(2s0, k1, k2)
at scale 2s0 and can be thought of as pairs k = (k1, k2).

At coarse scales µ ∈ N 0, the curvelet coefficients are defined by

αµ = 〈φ2s0,k1,k2 , P2s0f〉, µ ∈ N 0

where each φ2s0,k1,k2 is a Lemarié scaling function [50, 53]. Note that each scaling function
is nonoscillatory and that it is localized near a cube Q(2s0, k1, k2).

At fine scales µ ∈ N 1, we continue as earlier, with curvelet coefficients simply the
Multiscale Ridgelet coefficients of the filtered object:

αµ = 〈Dsf, ψµ〉, µ ∈Ms, s = s0, s0 + 1, . . .

In short, the inhomogeneous system differs from the earlier homogeneous system only
at coarse scales; it differ by collapsing a countable number of scales s ≤ s0 into a single
scale s0.

The collection of curvelets γµ resulting from our definition has been studied in [9]; it
still enjoys the tight frame property.

The arguments of Sections 3 and 4 do not carry through unchanged in the inhomoge-
neous frame. The coarse scale elements in the inhomogeneous expansion are not oscillatory.
As a result, they do not remain in L2 under fractional integrations. Hence, we cannot apply
the full biorthogonal decomposition machinery of Sections 3 and 4 in the inhomogeneous
frame. For example, the companion γ−µ of a coarse-scale element γµ does not exist as an L2

function. However, the companion γ+
µ does exist.

Fortunately, we are still able to construction an estimator. Indeed, for µ ∈ N 0 we still
have the dual elements Uµ and Vµ and we have the inhomogeneous reproducing formula

f =
∑
µ

[Rf,Uµ]κ−1
µ γµ,
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where the sum is over µ ∈ N .
In fact, the exact transcription of Theorem 2 carries through word-for-word in the

inhomogeneous frame setting. So working in the inhomogeneous system we still can obtain
the curvelet coefficients from an appropriate analysis of the noiseless Radon data.

The only difficulty is that while in the homogeneous setting all the Uµ and Vµ were C∞

and of rapid decay in t, in the inhomogeneous setting the µ ∈ N 1 remain C∞ and of rapid
decay, while the µ ∈ N 0 remain C∞ but are now of relatively slow decay in t. In other
words, there is no analog of Lemma 2 for the coarse-scale elements µ ∈ N 0.

7.2 Construction of N (ε)

Our approach to reconstruction from the noisy data will be to specify a collection N (ε)
of potentially significant curvelet coefficients, depending on the noise level, and estimate
the coefficients in that collection by thresholding, based on statistical significance; all other
coefficients will be taken as a priori insignificant, based on an analysis given below, and set
to zero.

An important feature of our expansion will be the idea that the coarsest scale s0 depends
on the noise level. That is, we will actually be varying our inhomogeneous expansion, with
the coarsest scale becoming finer and finer as the noise level becomes smaller.

Assumption: Coarse-Scale Dependence. The coarse scale of the inhomogeneous
curvelet frame s0 = s0(ε) obeys

2−s0−1 ≤ ε2/15 ≤ 2−s0 . (7.1)

We note that in an asymptotic sense, this coarse scale is still very coarse compared to
the scale at which the action mainly takes place. By adopting this notion of scale, we can
work with a simply-described collection N (ε) with simply-proved properties.

The underlying reason for our restriction (7.1) is the uncertainty principle. Curvelet
coefficients involve the analysis of objects which are both space-limited (by windowing)
and frequency limited (by bandpass filtering). Perfect simultaneous localization is impos-
sible, and the lack of perfect localization creates the need for bookkeeping to keep track
of presumably negligible behavior in extreme frequencies or extreme spatial positions; one
needs repeatedly to establish decay estimates which verify that behavior at such extremes
is indeed negligible. It turns out that, at scales finer than s0(ε), the degree of simultaneous
localization allows us to greatly simplify certain such bookkeeping arguments.

We partition N (ε) = N 0(ε)∪N 1(ε) into coarse and fine scales, and we start our descrip-
tion by considering coarse scale coefficients. Each coarse-scale µ ∈ N 0 is a pair (k1, k2).

Definition of N 0(ε). We allow µ ∈ N 0(ε) if the associated dyadic square Q =
Q(s0, k1, k2) interacts with the unit square:

d(Q; [0, 1]2) ≤ 2−s0+1,

where d(·, ·) is the Hausdorff distance.
At the fine scales µ ∈ N 1 indices take the form (Q, λ), where the the dyadic square Q

is identified by (s, k1, k2) with s refers to the scale index and k1, k2 to the location of Q,
while the parameter λ = (j, k, i, `, ε) indexes the ridgelet transform.

Definition of N 1(ε). We let µ ∈ N 1(ε) if it obeys

1. Localization in Scale. For the scale index s,

1
2
ε2/15 ≤ 2−s ≤ ε2/5. (7.2)
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2. Localization in Space. For the spatial position Q,

d(Q, [0, 1]2) ≤ 2−s+1

3. Ridgelet Localization. For the ridgelet index λ = (j, k; i, `, ε):

(a) Localization in ridge scale. The ridge scale parameter j satisfies

j = {s− 2, s− 1, s, s+ 1, s+ 2, s+ 3, s+ 4};

(b) Localization in angle. The angular scale parameter i satisfies

|i− j| < s;

(c) Localization in ridge location. The ridge location parameter k satisfies

|k| ≤ 2j+1.

7.3 Properties of N (ε)

Underlying our definition of N (ε) is the following analysis:

Theorem 5

1. The size of neglected coefficients.

sup
f∈E2(A)

∑
µ6∈N (ε)

|αµ|2 ≤ C ε4/5; (7.3)

2. The risk proxy.

sup
f∈E2(A)

∑
N (ε)

min(|αµ|2, 22sε2) ≤ C ε4/5. (7.4)

3. The number of processed coefficients. The cardinality Nε = #N (ε) obeys

Nε ≤ C ε−2; (7.5)

In short,

• The size of the neglected coefficients obeys a 4/5 scaling law;

• The risk proxy obeys a 4/5 scaling law;

• The number of estimated coefficients grows polynomially in the inverse noise level.

Each of these properties plays a key role below. Theorem 5 is proved in the Appendix.
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7.4 Definition of Estimator

We now return to the estimation problem (6.1)-(6.2) or equivalently of estimating the
inhomogeneous curvelet coefficients (αµ : µ ∈ N ) from the sequence data

yµ = αµ + εκ−1
µ nµ,

where nµ is a (non-i.i.d.) Gaussian noise (E(nµnµ′) = [Uµ, Uµ′ ]; σµ = ‖γ+
µ ‖2). We recall

that κµ = 2−s – ([Kf,Uµ] = κµ〈f, γµ〉) and that the σµ’s are uniformly bounded. The same
conclusion applies to coarse scale coefficients, µ ∈ N 0; namely, κµ = 2−s0 and the σµ’s are
uniformly bounded.

We estimate the coefficients αµ by a thresholding rule and construct an estimator of
the form:

f̂ =
∑
N (ε)

α̂µγµ.

The thresholding is performed as follows. With the soft threshold nonlinearity δ(y, t) =
sgn(y)(|y| − t)+, we let Nε be the cardinality of the finite set N (ε) and set thresholding
parameter λ(ε) = ε

√
2 log(N(ε)). We think of this as a “small” multiple of the noise level ε;

a statistically significant coefficient will be one which exceeds this. We estimate individual
coefficients by the rule

α̂µ =

{
δ(yµ, λκ−1

µ σµ) µ ∈ N (ε)
0 µ 6∈ N (ε)

, (7.6)

In short:

1. The curvelet coefficients αµ in the ‘thresholding zone’ N (ε) are estimated by applying
a scalar nonlinearity to the noisy coefficients yµ; and

2. All the other coefficients are estimated by zero.

7.5 Analysis of the Estimator

Owing to the tight frame property, we have

E‖f̂ − f̂‖22 ≤ E‖α̂µ − αµ‖2`2 ,

which allows us to shift attention to the coefficient domain. Considering first the processed
coefficients, µ ∈ N (ε), and applying the Oracle Inequality (6.5), we have

E
∑
N (ε)

(α̂µ − αµ)2 ≤ (1 + 2 log(Nε))(ε2
∑
N (ε)

(
κ−2
µ σ2

µ/Nε + min(α2
µ, ε

2κ−2
µ σ2

µ)
)
.

Setting τ2
µ = κ−2

µ σ2
µ, and considering now all µ ∈ N , the risk of the thresholding rule (7.6)

is hence bounded by

E‖α̂− α‖2`2 ≤ (1 + 2 log(Nε))

ε2τ̄2 +
∑
N (ε)

min(α2
µ, ε

2τ2
µ)

+
∑
N (ε)c

α2
µ, (7.7)

where τ̄2 is simply a shorthand for {Nε}−1∑
N (ε) τ

2
µ. We now estimate systematically each

component of this risk bound.
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The term on the extreme right of (7.7) is controlled through Theorem 5’s analysis of
the size of neglected coefficients; by (7.3) it is O(ε4/5). From that Theorem’s analysis of
the proxy risk (7.4) we have ∑

N (ε)

min(α2
µ, ε

2τ2
µ) ≤ C ε4/5. (7.8)

On the other hand, we have

ε2τ̄2 = ε2
∑
N (ε)

κ−2
µ σ2

µ/Nε

≤ C ε2
∑
N (ε)

22s/Nε

≤ C ε2 sup
N (ε)

22s (7.9)

≤ C ε2ε−4/5 ≤ C ε6/5. (7.10)

Here the key step was to invoke scale localization (7.2) at the third display (7.9). Finally,
counting the number of estimated coefficients crudely via (7.5) we have

log(Nε) = O(log(ε−1)). (7.11)

Applying now the estimates (7.3),(7.8), (7.10), and (7.11) to (7.7) gives the following
upper bound on the risk of the estimator (7.6)

E‖α̂− α‖2`2 ≤ C
(
log(ε−1)(ε6/5 + ε4/5) + ε4/5

)
≤ C log(ε−1) ε4/5. (7.12)

This proves the main result of this paper:

Theorem 6 Let f̂ be the shrinkage estimator f̂ =
∑
µ α̂µγµ where α̂µ is given by (7.6).

Then,
sup
E2(A)

E‖f̂ − f‖22 ≤ C log(ε−1)ε4/5. (7.13)

7.6 Variations

Many variations on the estimation procedure are, of course, possible. For instance, in
practice, we may not want to threshold the coarse layer of curvelet coefficients yµ, µ ∈ N 0(ε):
e.g. one might consider estimating those αµ’s with

α̂µ =

{
yµ µ ∈ N 0(ε), µ ∈ Kε

0 µ ∈ N 0(ε), µ /∈ Kε
,

for some strategic collection of pairs Kε. Estimators of this kind obey similar bounds.
Because bounds similar to (7.7) exist for hard-thresholding rules, Theorem 6 continues to

hold if one replaces the soft-thresholding nonlinearity δ(y, λ) by hard thresholding η(y, λ) =
y 1{|y|≥λ}, with the same choice of thresholding parameter.

In addition, the authors are confident that further refinements would give versions of
Theorem (6) with sharper bounds. In particular, it seems plausible that Hybrid-SURE
estimation procedures [45] would allow to remove the logarithmic factor from the upper
bound (7.13). Such refinements are, however, beyond the scope of the present article.
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8 Lower Bounds

The behavior we have established for shrinkage of curvelet coefficients is near-optimal as
regards rate of convergence; no estimator can achieve an essentially better rate uniformly
over E2(A).

Theorem 7 Let E2(A) be the collection (6.8) of objects which are C2 away from a C2

curve. The minimax mean squared error

M(ε, E2(A)) = inf
f̂

sup
E2(A)

E‖f̂ − f‖22

is bounded below by

M(ε, E2(A)) ≥ c ε4/5(log ε−1)−2/5, ε→ 0.

As is standard in lower bounds, the proof relies on the construction of hypercubes
embedded in E2(A), and then considering the subproblem of estimation when the object
comes from one of the vertices of the hypercube. The problem of estimation becomes
simply the problem of determining which of the many vertices of the hypercube may have
generated the observed data; choosing the hypercube in the appropriate way makes it very
difficult to do so. From this lower bound over the hypercube, it follows that no estimator
can do very well in the original problem of estimating an unknown f known only to lie
in the larger class E2(A). The hypercube construction itself is similar to constructions in
[26, 21, 23].

An important feature of our argument is the fact that, in an inverse problem setting,
the problem of inference about f necessarily involves inference about a Normal mean in the
presence of correlated noise.

8.1 Hypercubes

Let ϕ(t) be a real-valued function of real variable t having compact support ⊂ [0, 2π] with
‖ d2

dt2
ϕ‖∞ = 1. With C the constant defining the class E2(A), define the collection

ϕi,m(t) = C m−2ϕ(mt− 2πi), i = 0, 1, . . . ,m− 1.

Fix an origin at (1/2, 1/2) and define polar coordinates (r, θ) relative to this choice of origin.
Set r0 = 1/4 and set f0 = 1{r≤r0}. Consider the collection of functions

ψi,m = 1{r≤ϕi,m+r0} − f0.

These functions are disjointly supported on lens-shaped regions. They are orthogonal and
their common L2 norm can be calculated approximately; namely,

‖ψi,m‖2 ³ Cϕ ·m−3/2, m→∞

with
Cϕ = ‖ϕ‖L1[0,2π].

They generate a hypercube by the prescription

Hm = {h = f0 +
∑
i

ξiψi,m, ξi ∈ {0, 1}};
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Figure 3: The Hypercube Construction. Here f0 is the indicator of the circular region;
around this region are m ‘bulges’; each bulge is disjoint from the other bulges and so the
corresponding indicators ψi,m are orthogonal in L2[0, 1]2. Each combination of the circular
region together with a specific collection of bulges makes a specific image which belongs to
E2(A); the 2m such images can be viewed as a complete m-dimensional hypercube.

each vertex of the hypercube is the indicator of a blob with C2 smooth boundary, a corru-
gated disk to which have been appended a certain number of lense-shaped features.

Not only do the vertices h ∈ Hm correspond to sets with C2-smooth boundaries; each
one actually obeys the quantitative restriction, h ∈ E2(A). More succinctly, we have the
embedding

Hm ⊂ E2(A).

Consider the same Radon inversion problem over the restricted function class Hm. We
have noisy data

Y (dtdθ) = (Rf)(t, θ)dtdθ + εW (dtdθ),

where now f ∈ Hm and so difficulty of estimation is measured by

M(ε,Hm) = inf
f̂

sup
Hm

E‖f̂ − f‖22

From the setwise inclusion Hm ⊂ E2(A) we have the inequality at the level of minimax
risks

M(ε, E2(A)) ≥M(ε,Hm). (8.1)

The above argument works for any choice of m, and hence provides a range of lower
bounds. Below we will develop lower bounds on the minimax mean-squared errorM(ε,Hm),
for certain m; these bounds take the form

M(ε,Hm) ≥ B ·m. (8.2)

Below, we will specialize to m = m(ε) satisfying

ε ∼ c ·m−5/2
√

log(m). (8.3)
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for an appropriate constant c. Specializing (8.2) to the choice m(ε) of (8.3) and invoking
(8.1) gives Theorem 7.

In deriving risk bounds on hypercubes, it is useful to note that, on the hypothesis
f ∈ Hm, we can restrict our attention to estimators of the form

f̂ = f0 +
∑
i

ξ̂iψi,m. (8.4)

Indeed, let Pm denote the L2 projection on the smallest affine subspace containing all such
functions. Then since for f ∈ Hm, Pmf = f we have

‖Pmf̂ − f‖22 = ‖Pmf̂ − Pmf‖22 ≤ ‖f̂ − f‖22.

Hence the risk of a general estimator f̂ is greater or equal to that of a corresponding
estimator Pmf̂ , which of course can be written in the form (8.4).

Moreover, owing to the orthogonality of the ψi,m, we have that for estimators obeying
(8.4)

‖f̂ − f‖L2 = ‖ξ̂ − ξ‖`2 . (8.5)

So the problem reduces to one of estimating ξ.
A further reduction is possible. Let now gi = Rψi,m denote the Radon-space image of

one of our hypercube generators ψi,m. Although the ψi,m are orthogonal for L2(dx1dx2),
the gi are not orthogonal for L2(dtdθ) in general. However, owing to the invertibility of the
Radon transform, the gi’s are linearly independent. Let now Vm denote the affine space

Rf0 +
∑
i

θigi,

for arbitrary choices (θi) We note that, for any function ν(t, θ) which is L2(dtdθ) orthogonal
to Vm, the law of

∫
νY (dtdθ) is N(0,

∫
ν2dtdθ) independently of ξ. In short, the projection

of the Radon data on the span Vm is sufficient for ξ.
Because of the linear independence of the gj ’s, the linear functionals [gj , f − Rf0] give

a nondegenerate set of affine coordinates for f ∈ Vm. Consider now projecting the Radon
data onto the gj ’s:

Yj =
∫
gjY (dtdθ)−

∫
gjRf0dtdθ.

The vector Y = (Yj) gives a nondegenerate set of affine coordinates for the projection of the
Radon data on the space Vm. Hence, the vector Y = (Yj) is a sufficient statistic for the ξ’s
and, we may restrict our attention to estimators that are (possibly randomized) functions
of Y alone. Now

Yj =
∑
i

[gj , gi]ξi + ε[W, gj ].

In matrix notation, Y ∼ N(Gξ, ε2G) where G is the Gram matrix of the gi’s; i.e., Gij =
[gi, gj ]. Because the gi’s are linearly independent, the matrix G is invertible. Then define
X = G−1Y . As Y is a sufficient statistic for the ξ’s, so is X and, hence, we may restrict
our attention to estimators that are (possibly randomized) functions of X alone.

Because of the risk isometry (8.5) the problem becomes to estimate, under squared `2-
norm loss, the mean ξ ∈ {0, 1}m of a multivariate Gaussian vector from X ∼ N(ξ, ε2G−1).

The lemma in Subsection 8.2 immediately below gives a lower bound on the minimax
risk for estimating ξ, of the form

inf
ξ̂

sup
ξ∈{0,1}m

E‖ξ̂ − ξ‖22 ≥ B ·m,
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with B an absolute constant. The condition for applying that lemma is that the ‘noise level’
in each coordinate is at least one, i.e. that each conditional Gaussian law L(Xi|(Xj : j 6= i))
has variance at least 1.

To check this condition, let V be the covariance matrix of X, V = ε2G−1 and τ2
i be the

conditional variance of Xi given the other coordinates

τ2
i = Var (Xi|Xj , j 6= i).

With these notations, we have

1/τ2
i = (V −1)ii = ε−2Gii = ε−2‖gi‖2 = ε−2κ2

m, say,

where κm = ‖gi‖L2(dtdθ) is studied in subsection 8.3 below.
Now if we take the smallest m so that

ε−2κ2
m ≤ 1 (8.6)

then we (just barely) achieve the desired noisiness in the conditional laws of X: Var
(Xi|Xj , j 6= i) ≥ 1. From subsection 8.3, we have the asymptotic relation

κm ≤ c ·m−5/2
√

log(m), m→∞,

with c an absolute constant. From this we derive that an m(ε) obeying (8.3) gives the
required noisiness.

8.2 Bayes Risk on Hypercubes, Dependent Data

Lemma 3 Let π be the prior on θ ∈ {0, 1} which puts equal probability on both outcomes
and let B be the Bayes risk of estimating θ from X ∼ N(θ, 1). Observe Y ∼ N(θ, V ),
θ ∈ {0, 1}n, and suppose that τ2

i = 1. Then,

inf
θ̂

sup
θ∈{0,1}n

E‖θ̂ − θ‖22 ≥ B · n.

Proof of Lemma. The proof of the lower bound follows an argument developed in [45]. The
indicated minimax risk exceeds the Bayes risk of any particular choice of prior π on θ:

inf
θ̂

sup
θ∈{0,1}n

E‖θ̂ − θ‖22 ≥ inf
θ̂
EπE‖θ̂ − θ‖22.

Consider then the prior defined by setting the components θi to be independent, and P (θi =
0) = P (θi = 1) = 1/2; we obtain a lower bound by calculating its Bayes risk. (This is not
necessarily the least-favorable prior; but this choice produces lower bounds of the correct
order.)

Let us introduce the random variables ξi defined by

ξi = θi + τ2
i {V −1(Y − θ)}i.

¿From Y − θ ∼ N(0, V ), one easily deduces V −1(Y − θ) ∼ N(0, V −1) and, therefore,

ξi − θi ∼ τ2
i N(0, (V −1)ii) = τ2

i N(0, 1/τ2
i ) = N(0, τ2

i ).

32



In [45], the authors argue that the distribution of θi conditional on {Y, θj for j 6= i} is the
same as that conditional on ξi. This is useful to bound the Bayes risk B(π) from below

B(π) =
∑
i

E(θ̂i − θi)2

=
∑
i

E(Var(θi|Y ))

≥
∑
i

E(Var(θi|Y, θj for j 6= i))

=
∑
i

E(Var(θi|ξi)).

The result now follows from the definition of B.

8.3 Norm estimates

Lemma 4 For κm = ‖gi‖,

κm ³ m−5/2(log(m))1/2, m→∞.

Proof of lemma. We begin the proof by observing that for any ψi,m, there are ellipses E
and E ′, both with major and minor axes of sidelength ∼ m−1 and ∼ m−2 respectively such
that

1E ≤ ψi,m ≤ 1E ′ .

Then the Radon transforms satisfy

R{1E} ≤ gi ≤ R{1E ′},

Moreover, because of the geometric similarity of the support of ψi,m to the fixed lens-shaped
region

{(y, ϕ(y)) : 0 ≤ y ≤ 2π},

we can arrange that the ratio of axis lengths for the inscribing and circumscribing ellipses
stays bounded independently of both i and m. We now calculate the size of the bracketing
Radon transforms.

We first remark that the Radon transform has the following natural covariance property.
Let U be an orthogonal matrix representing planar rotation by θ0 radians and let b ∈ R2,
then

R{f(Ux− b)}(t, θ) = R{f(x)}(t− UT b, θ − θ0). (8.7)

Using this, we reduce consideration to a standard ellipse E = {x2/a2 + y2/b2 ≤ 1}. We get

R{1E}(t, θ) = ab/σ(1− t2/σ2)1/2, σ2 = a2 cos2 θ + b2 sin2 θ.

This follows from the fact that the Radon transform of the unit disk g(x, y) = 1{x2+y2≤1}
is given by

Rg(t, θ) = 2(1− t2)1/2.

and a simple change of variable.
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Now, take a = m−2, b = m−1 and let us calculate the L2 norm of R{1E}. We have

‖R{1E}‖22 =
∫ 2π

0

∫ σm

−σm
(m−3/σm)2(1− t2/σ2

m) dtdθ

= m−6
∫ 2π

0
σ−1
m dθ

∫ 1

−1
(1− u2) du

∼ m−5
∫ 2π

0
(m−2 cos2 θ + sin2 θ)−1/2 dθ

∼ m−5 logm. (8.8)

The desired conclusion follows from (8.8) and the invariance (8.7).

9 Discussion

9.1 Deconvolution

So far, we have focused entirely on Radon inversion. However, our approach is more general,
able to give results for a range of inverse problems. We briefly mention results for an inverse
problem of deconvolution which follow as corollaries of the results above.

Define the two-dimensional Bessel Potential of order α, the kernel bα(x) with Fourier
transform

b̂α(ξ) = (1 + |ξ|2)−α/2, ξ ∈ R2.

The Bessel operator Bα is the operator of convolution with bα: Bα = bα ? f . Below we
will study an inverse problem based on this operator; but first we consider the operator-
biorthogonal curvelet decomposition of Bα. Recalling the general definition given in Section
1.7, and applying it now in the case K = Bα, we can see that all the required machinery
works smoothly, producing a decomposition with κs = 2−2αs for all s ≥ s0.

The key insight is that the Bessel potential operator has well-known connections to the
Riesz fractional integration operator

Iα(f)(x) = cα ·
∫
f(y)/‖x− y‖2−αdy,

where cα = Γ(1 − α/2)/(π2αΓ(α/2)); compare [60]. In particular, the two kernels behave
comparably near the origin:

bα(x) ∼ cα|x|α−2, |x| → 0.

More to the point, Bα behaves, at fine scales, like fractional integration of order α, in the
sense that, when applied to an oscillatory function ga,b(x) = g((x− b)/a) with small a, we
have

Bα(ga,b) ≈ Iα(ga,b)

in various senses. Put another way, the frequency response of the fractional integration
operator Iα is exactly |ξ|−α while the frequency response of the Bessel potential operator
is (1 + |ξ|2)−α/2, evidently asymptotic to |ξ|−α as |ξ| → ∞. The Bessel operator of order α
principally differs from fractional integration of order α at low frequencies, where it is far
better-behaved. This key distinction is responsible for the fact that bα is of rapid decay as
|x| → ∞, while the Riesz kernel is of slow decay.
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Now the fractional integration operator is precisely a (negative) fractional power of the
Laplacian: on nice functions f ,

Iα(f) = (−∆)α/2f.

We recall the results of Section 3, which showed that curvelets provide a biorthogonal
decomposition of ∆−α. Proceeding analogously, we can construct a pair of frames (γ]µ) and
(γ[µ) which furnish a biorthogonal decomposition of the Bessel operator Bα. Moreover, this
works equally as well for the inhomogeneous curvelet decomposition as for the homogeneous
one. In what follows, we assume the inhomogeneous curvelet expansion.

Consider the two-dimensional inverse problem in white noise,

Y (dt) = (Bαf)(t)dt+ εW (dt), t ∈ R2, (9.1)

where, as in (1.3), f is a compactly supported function which is C2 away from a C2 edge.
In effect, the Bessel transform smoothes out the edges and otherwise blurs the object.

Using the operator-biorthogonal decomposition of the Bessel kernel, we can propose in
the setting (9.1) to obtain noisy curvelet coefficients

yµ = κ−1
s 〈Y, γ]µ〉,

and then to reconstruct f by the thresholding rule

f̂ =
∑

µ∈Nα(ε)

δ(yµ, tεκ−1
s )γµ. (9.2)

For an arbitrary value of α > 0, one would use, here, a slightly different version of our
definition of ‘important coefficients’ Nα(ε) introduced in section 7.2, see below for details,
and the same threshold tε, defined in the Radon case.

The re-use of the Radon concepts makes sense in the Bessel setting, at least if α = 1/2.
The Gram operator of the Radon transform is simply a fractional power of the Laplacian;
in fact,

R∗R = I1.

On the other hand, the Gram operator of the Bessel Potential of order 1/2 is precisely

B1/2B1/2 = B1.

Our earlier discussion supports a close quantitative similarity of the two operators I1 and
B1 at fine scales. This similarity can also be seen as follows. We have already seen, in
Section 4, that there is a precise formal correspondence between fractional integration of
order 1/2 and Radon transform:

〈(−∆)−1/4γµ, γ
+
µ′〉 = κs〈γ−µ , γ+

µ′〉 = κs[Vµ, Uµ′ ] = [Rγµ, Uµ′ ].

At the same time, it is clear that, because of the similarity of (−∆)−1/4 and the Bessel
potential of order 1/2 at high frequencies, we have the approximate relation

〈(−∆)−1/4γµ, γ
+
µ′〉 ≈ [B1/2(γµ), γ]µ′ ]

in various senses, where the approximation improves at successively finer scales.
Recall that in our construction of N (ε) we consider only scales finer than a certain cutoff

s0(ε), and we let s0(ε)→∞ as ε→ 0. Notice that there is very nearly an isometry between
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tail sections of the γ]µ′ system and of the γ+
µ′ system. It is apparent that, when α = 1/2, all

relevant properties in the analysis of estimator (9.2) will be equivalent, to within bounded
factors, to corresponding properties derived in the Radon setting.

It is clear that all the quantitative asymptotics that were developed to study the Radon
case apply immediately to the estimator (9.2) in the case α = 1/2. In short, we have

• A 4/5-law for the curvelet estimator. Suppose that f ∈ E2(A), and we have to recover
f from noisy Bessel data (9.1). For each δ > 0, the estimator (9.2) obeys

E‖f̂ − f‖22 ≤ C · ε4/5+δ, ε→ 0.

where C is the same for all f ∈ E2(A)

• A 4/5-law for the lower bound. Precisely the same arguments used to establish
Theorem 7 will establish that, for all measurable functions of the observations (9.1),
and all δ > 0, we have

sup
E2(A)

E‖f̂ − f‖22 ≥ cδ ε4/5−δ, ε→ 0.

• A 2/3-law for wavelet-based approaches. The best thresholding estimator based on
Wavelet-Vaguelette decomposition obeys

sup
E2(A)

E‖f̂ − f‖22 ≥ c ε2/3, ε→ 0.

• A 1/2-law for linear deconvolution approaches. The best linear estimator for decon-
volution obeys

sup
E2(A)

E‖f̂ − f‖22 ≥ c ε1/2, ε→ 0.

Summarizing formally:

Corollary 1 Consider the inverse problem of recovering an object f ∈ E2(A) from noisy
blurred data (9.1), where α = 1/2. The method (9.2) achieves essentially the optimal rate
ε4/5 throughout E2(A), outperforming wavelets (which achieve only the ε2/3 rate) and linear
methods (which achieve only the ε1/2 rate).

Corresponding results can be expected to hold for other deconvolution problems with
different α. Of course such results would hold with different exponents than 4/5, 2/3 and
1/2. However, we suspect that an α-dependent coefficient set Nα(ε) would be required for
construction of an effective estimator. For instance, if one defines the set of ‘important
coefficients’ Nα(ε) as in section 7.2 with the sole modification that the scale index s is now
restricted to the range

1
2
ε2/15 ≤ 2−s ≤ ε1/(3/2+2α), say,

compare (7.2), then preliminary calculations show that our curvelet estimator would achieve
an estimation rate with exponent 2/(3/2 + 2α).

Exploring this more general situation seems an interesting project for further research.
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9.2 Generalization

The possibility of generalizing to deconvolution problems is no accident. In fact there is a
general strategy for treating inverse problems, of which this article gives an example. The
strategy can be formulated as a slogan:

We seek to construct decompositions for the object and data domains which
almost diagonalize the Gram operator K∗K of K and which almost optimally
sparsify the typical object to be recovered. We then exploit the new represen-
tations to address inverse problems with noisy data.

In this setting, the Gram operator is a fractional power of the Laplacian and the almost
diagonality of the Gram Operator is expressed by the Frame bound results in Sections 3
and 4. The optimal sparsity is expressed by the effectiveness of curvelets at representing
the object of interest with very few coefficients.

There are other examples of this high-level strategy at work: first, with wavelets [18]
and then with mirror-wavelets [47]. We believe that many other examples are possible.

9.3 A Challenge

As indicated in the introduction, there is an extensive literature on edge-preserving smooth-
ing and edge-preserving deconvolution. In fact the literature falling in these two categories
is far too extensive for us to give a satisfactory set of representative citations.

Much of the literature on this topic is purely methodological. Typical articles in that
literature construct computational methods which seem, on general grounds, appropriate
and which exhibit numerous examples of subjectively “successful” reconstructions in specific
cases.

Here we have pursued a different strategy, of developing a theoretical model and an
optimality result for that model. To our knowledge, this is an innovation in the area of
edge preserving denoising/deconvolution.

We have heard, in conferences, oral presentations in which claims have been aired to
the effect that certain specific image processing algorithms offer ‘optimal way of processing
images’. For example, such claims have been given in oral presentations in connection with
total-variation based image processing methods. Such claims would require the development
of statistical/mathematical models similar to ours and some careful analyses establishing
some kinds of statistical/mathematical optimality. We are not aware, however, of efforts in
this direction. Moreover, we believe that in the model we are considering, such optimality
claims for pre-existing methods would be false. For example, we believe that in the setting
of Radon inversion discussed here, the method of regularized inversion based on Total-
Variation penalization, properly translated into this setting, would not achieve the optimal
rate 4/5.

Our results pose an implicit challenge to all the existing methodological work, which
we now make explicit:

Challenge: prove/disprove that existing methods of edge-preserving recovery achieve/don’t
achieve the optimal rates we have identified in this article.

This would require a major initiative subjecting a large body of methodological efforts
at edge-preserving reconstruction to a mathematical performance standard.

This initiative is important because, although the major developers of edge-preserving
technology may project a great deal of confidence in their tools, we believe that the full
story may be considerably different than they imagine. We know of no evidence to suggest
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that existing proposals for edge-preserving methods achieve optimal rates, and we believe
there is good reason to believe that they do not. In particular, we don’t believe that total
variation penalization can achieve the optimal rate 4/5 in this setting; instead we consider
it likely that it achieves at best the 2/3 rate of wavelet-based methods in this setting.

Our beliefs are based on mathematical structures underlying the main results of this
paper. The method proposed here deploys a system of anisotropic elements to achieve a
certain performance upper bound. The matching lower bound also employs anisotropic
elements. We believe that the appearance of similar anisotropic features in both lower
bounds and upper bounds points to a fundamental correctness or well-adaptedness of the
approach.

In common sense terms, we have shown that one can reconstruct an edge accurately
using a very anisotropic smoothing mechanism, analogous to having an elongated kernel
oriented precisely along the edge and having dimensions scaling like ` by `2. We have shown
that a very challenging case for reconstruction is to build a family of images, all depicting
the indicator of a set, and all differing from each other by the appending or excising certain
elongated regions of size ` by `2.

This suggests to us the strong possibility that a method achieving the optimal rate
must be based on a particular kind of adaptive anisotropic smoothing. Indeed, elementary
calculations show that if we simply consider the special system constructed for the lower
bound, and consider spatially variable kernel methods properly aligned with the edge but
not scaled according to the width = length2 principle, for example obeying width = length,
the performance achieved will not scale as 4/5.

In the existing literature on edge-preserving reconstruction we have never encountered
anisotropic smoothing consistent with the scaling law width = length2. Instead, when
anisotropy is invoked, it is largely the very weak kind of anisotropy where one axis of a
filter kernel is slightly amplified in length compared to the other. From the viewpoint of
the asymptotics we discuss here, such anisotropy is rather weak, and cannot substantially
improve rates of convergence.

Given the great deal of interest in nonlinear edge-preserving image processing methods,
the issue raised above would seem to be a vital next question.

10 Appendix: Proof of Theorem 5

We collect here various estimates which establish the conclusions of Theorem 5.

10.1 Size of Neglected Coefficients

We begin by establishing (7.3). In the subsections below, we establish three inequalities
(10.1), (10.5) and (10.7), each of which bounds the sum of squares of the neglected coeffi-
cients in a certain subset of N (ε)c. Each of these bounds is uniform over E2(A) and is of
size Cε4/5. The three subsets combine to cover N (ε) completely. Hence we conclude

sup
f∈E2(A)

∑
µ6∈N (ε)

|αµ|2 ≤ C ε4/5,

which is (7.3).
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10.1.1 Localization in Scale

We now show that, with a fine scale cutoff sε satisfying 2−sε ≤ ε−2/5, the sum of squares
at all finer scales obeys ∑

s>sε

∑
µ∈Ms

|αµ|2 ≤ C ε4/5. (10.1)

The sum in question can be reexpressed according to∑
s>sε

∑
µ∈Ms

|αµ|2 =
∑
s>sε

‖Dsf‖22 (10.2)

where Ds is the passband filtering operator. The lemma immediately below implies that
this last sum is bounded by C 2−2sε , and since 2−sε ≤ ε2/5, this yields (10.1). It remains to
state and prove the lemma.

Lemma 5
sup

f∈E2(A)
‖Dsf‖22 ≤ C 2−2s. (10.3)

Proof. Consider a standard two-dimensional wavelet basis φj,k1,k2,ε using smooth
wavelets of compact support and 3 vanishing moments. We will estimate the number
and size of coefficients 〈f, φj,k1,k2,ε〉 at level j. For each wavelet at scale j which intersects
the support of the edge curve, the coefficient obeys an amplitude bound a0,j = C2−j . There
are at most n0,j = C2j such coefficients. For every wavelet which does not intersect the
edge curve, the coefficient obeys an amplitude bound a1,j = C2−3j and there are at most
n1,j = C22j such coefficients which intersect the support of f at all. We conclude that the
sum of squares of the wavelet coefficients at level j is at most∑

k1,k2,ε

〈f, φj,k1,k2,ε〉2 ≤ n0,jA
2
0,j + n1,ja

2
1,j ≤ C2−j , j ≥ j0.

We note that this is uniform over all members f ∈ E2(A), because of the uniform control
that such membership brings on the size of f and its derivatives, and also the length of the
edge curve.

Now a standard principle of Littlewood-Paley analysis [38, 53] is that the sum of squares
of wavelet coefficients at level j is equivalent, within fixed constants, to the squared L2 norm
of a single-octave bandpass filter with passband centered at frequency 2j .

Now Ds is a double-octave passband filter with passband centered at frequency 22s. We
conclude that the squared L2 norm of Dsf is at most a constant times 2−2s. We note that,
because the estimate on the norm of the wavelet coefficients was uniform over all f ∈ E2(A),
so is the estimate on the passband norm. (10.3) follows.

10.1.2 Localization in Space

We now show that at scales coarser than the fine-scale cutoff, we may neglect the squares Q
separated from the support cube of f , Q0 = [0, 1]2, with total neglected coefficient energy
bounded by C · ε4/5.

Recall that the curvelet coefficient αµ at µ = (Q, λ) is given by

αµ = αQ,λ = 〈wQ(Dsf), ρQ,λ〉,
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where Ds is the operator of convolution by 24sΨ(22s·). If the bandpass kernel Ψ were com-
pactly supported then wQ(Dsf) would be identically zero for any Q such that d(Q,Q0) ≥
C 2−s. In that case, all curvelet coefficients associated to such squares would vanish and
there would be really nothing to prove.

However, in our definition of the curvelet transform, we chose the bandpass filter kernel
Ψ to be compactly supported in frequency (and therefore not in space). As a consequence,
Dsf is in general not compactly supported but only rapidly decaying away from the unit
square. We must therefore estimate the energy content of such a decaying object in squares
which are not neighboring to Q0. The central point is that the squares are of side 2−s while
the decay is happening on the scale 2−2s. Therefore at fine scales, by the time the function
is at least one square away from Q0, it is extraordinarily small.

The following lemma is well-known in classical analysis; we use it below and prove it
here for the convenience of statisticians and perhaps others.

Lemma 6 Let g : Rn → R be an arbitrary function such that for some m > 1, we have

|g(x)| ≤ Cm (1 + |x|)−m,

for some constant Cm and let ga,b be the dilated translation of g defined by g((x − b)/a).
Then, there is a constant C ′m such that∣∣∣∣∫

Q0

f(x) ga,b(x) dx
∣∣∣∣2 ≤ C ′m a−1(1 + a d(b,Q0))−2m+1‖f‖22. (10.4)

Proof of Lemma. Letting Ia,b ≡
∫
Q0
f(x) ga,b(x)dx, we have

|Ia,b| ≤
∫
Q0

|f(y)|Cm(1 + a|y − b|)−mdy

≤
(∫

Q0

|f(y)|2dy
)1/2

·
(∫

Q0

C2
m(1 + a|y − b|)−2mdy

)1/2

.

Now since |y − b| ≥ maxi |yi − bi| we have

(1 + a|y − b|)−2m ≤ min
i

(1 + a|yi − bi|)−2m.

Hence for i = 1, . . . , n,∫
Q0

(1 + a|y − b|)−2mdy ≤
∫ 1

0
(1 + a|yi − bi|)−2m dyi

≤ C a−1(1 + a d(bi, [0, 1]))−2m+1,

On the other hand
max
i
d(bi, [0, 1]) ≥ d(b,Q0)/

√
n

which implies ∫
Q0

(1 + a|y − b|)−2m ≤ C a−1(1 + a d(b,Q0))−2m+1.

(10.4) follows.
The rapid decay of Ψ implies that for each m ≥ 0, there is a constant Cm such that

|Ψ(x)| ≤ Cm (1 + |x|)−m,
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and obviously |Ψ2s(x)| ≤ Cm24s (1 + 22s|x|)−m. From

(Dsf)(x) =
∫
Q0

f(y)Ψ2s(x− y)dy,

we see that Lemma 6 gives the existence of a constant C so that

|Dsf |(x) ≤ C 23s(1 + 22s d(x,Q0))−m+1/2‖f‖2.

It follows that on x ∈ Q,

|Dsf |(x) ≤ C · 23s · (1 + 22s d(Q,Q0))−m+1/2 · ‖f‖2,

and so, from ‖wQ‖L2 ≤ C2−s,

‖wQ ·Dsf‖22 ≤ C · 24s · (1 + 22s d(Q,Q0))−2m+1 · ‖f‖22.

This bound, which holds with a constant C depending only on m, expresses the exception-
ally fast decay of the size of Dsf as Q moves away from Q0.

Let now Q′s denote the collection of squares at scale s obeying d(Q,Q0) ≥ 2 · 2−s. Then
because the ridgelets ρλ are orthonormal, we can calculate the norm of the corresponding
curvelets associated to a square Q from the norm of the object wQ ·Dsf∑

λ

|αQ,λ|2 = ‖wQ ·Dsf‖22.

Hence the norm of the neglected coefficients at scale s obeys∑
Q′s

∑
λ

|αQ,λ|2 =
∑
Q′s

‖wQ ·Dsf‖22

≤ C · 24s ·
∑
Q′s

(1 + 22s d(Q,Q0))−2m+1 · ‖f‖2L2 .

Now Q = Q(s, k1, k2) can be reparametrized in terms of k1 and k2, and we have Q ∈ Q′s
only if (k1, k2) 6∈ K, where

K = {(k1, k2) : −1 ≤ ki ≤ 2s}.

Define the slightly smaller index set

K0 = {(k1, k2) : 0 ≤ ki < 2s}.

We note that for Q ∈ Q′s,

d(Q,Q0) ≥ c · 2−s · d((k1, k2),K0),

and that for all sufficiently large m,∑
k 6∈K

d((k1, k2),K0)−2m <∞.

It follows that for such m, there is Cm with

24s
∑
Q′s

(1 + 22s d(Q,Q0))−2m+1 ≤ Cm · 2−s(2m−5).

41



We conclude ∑
Q′s

∑
λ

|αQ,λ|2 ≤ Cm · 2−s(2m−5) · ‖f‖22.

Summing now across s ≥ s0(ε), we get, with 2m− 5 ≥ 6,∑
s≥s0

∑
Q′s

∑
λ

|αQ,λ|2 ≤ Cm · ε4/5 · ‖f‖22, (10.5)

where we used (7.1) to obtain∑
s≥s0(ε)

2−6s ≤ C · 2−6s0(ε) ≤ C · ε4/5.

10.1.3 Ridgelet Localization

We have just considered the collection Q′s of squares Q far from Q0. We have shown that
at scales s ≥ s0 the combined energy in all coefficients from squares in Q′s obeys the 4/5
law. It remains to consider squares close to Q0 and show that, while some coefficients may
be large, the energy of excluded coefficients also obeys the 4/5 law.

In the next two sections we develop a series of Lemmas providing inequalities (10.8),
(10.9), and (10.20) which imply

Corollary 2 Let Λs be collection of ridgelet indices λ = (j, k; i, l, ε) obeying

1. |j − (s+ 1)| ≤ 3,

2. |i− j| < s; and

3. |k| ≤ 2j+1.

For each m ≥ 0, there exists a constant Cm such that keeping those λ’s in Λs results in an
error bounded by ∑

λ/∈Λs

|αQ,λ|2 ≤ Cm 2−2sm‖Dsf‖22. (10.6)

We now show that using this estimate and considering all squares near Q0, we obtain
the 4/5 law. The relevant collection Qs \ Q′s of squares Q s.t. d(Q,Q0) < 2−s+1 has, say,
Ns squares; note that Ns ≤ 22s + 2s+3. Hence from (10.6),∑

Q∈Qs\Q′s

∑
λ/∈Λs

|αQ,λ|2 ≤
∑

Q∈Qs\Q′s

Cm 2−2sm‖Dsf‖2

= Cm 2−2sm‖Dsf‖2 ·
∑

Q∈Qs\Q′s

1

≤ Cm 2−2s(m−2)‖Dsf‖2.

For instance, take m = 4 in (10.6). With this choice of m we have∑
Q∈Qs\Q′s

∑
λ/∈Λs

|αQ,λ|2 ≤ C 2−4s‖Dsf‖2 ≤ C 2−6s.

Therefore, since we set 2−6s0 ∼ ε4/5, we have∑
s≥s0

∑
Q∈Qs\Q′s

∑
λ/∈Λs

|αQ,λ|2 ≤ C 2−6s0 = C ε4/5. (10.7)
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10.1.4 Localization in Angular Scale and Ridge Location

We let aλ = 〈g, ρλ〉 be the ridgelet coefficient sequence of an object g ∈ L2(R2) which is
supported in the unit square.

Lemma 7 Under the support constraint supp(g) ⊂ [0, 1]2, we have, for each m > 0∑
λ

22(i−j)m |aλ|2 ≤ Cm ‖g‖22, (10.8)

and ∑
k: |k|≥2j+1

∑
i,`,ε

|aλ|2 ≤ Cm 2−2jm ‖g‖22. (10.9)

The first inequality concerns localization in angular scale i; it shows that, when the
object is compactly supported, there is negligible energy at any high angular scale for
any j, k. The second inequality shows that there is negligible energy at ridge locations
corresponding to ridges far from the unit disk.

In fact, inequality (10.8) is proved in [9]. So we prove only (10.9) here. Our proof will
be based on three lemmas. We first state the lemmas, derive their implications, and only
later prove the lemmas.

With ψj,k the Meyer wavelet as in Section 2, define

ψ+
j,k(t) =

1
2π

∫
eiλtψ̂j,k(λ)|λ|dλ (10.10)

Owing to the Fourier multiplier |λ| this is a fractionally-differentiated version of ψj,k. Using
this, we can state the key angular energy identity

Lemma 8 ∑
i,`,ε

|aλ|2 =
∫ (∫

Rg(t, θ)ψ+
j,k(t) dt

)2

dθ. (10.11)

In words, the ridgelet coefficients associated with a given j, k measure the energy of the
variation in θ of the function θ 7→ 〈Rg(·, θ), ψ+

j,k〉.
The right side of identity (10.11) suggests that to get (10.9), we should show that

〈Rg(·, θ), ψ+
j,k〉 is already small as soon as |k| ≥ 2 · 2j and that it decreases rapidly with

increasing k.
Of course, the function ψ+

j,k is localized near the dyadic interval [k2−j , (k+ 1)2−j ] while
the Radon transform Rg vanishes for |t| ≥ 1 and, therefore, their interaction is indeed
rather weak provided |k| ≥ 2 · 2j and j is large. Moreover, because of Radon isometry,∫
Rg(t, θ)ψ+

j,k(t) turns out to be controllable by ‖g‖2. The combination of these observations
leads to (10.9).

The next two lemmas formalize these observations at which point the proof becomes
straightforward.

Let (φI : I = (j, k, ε)) be a nice orthonormal wavelet basis for L2(R), starting from
coarsest level j = j0, with scaling functions φj0,k,0 and wavelets φj,k,1 for j ≥ j0. By ‘nice’
we mean that the fine scale wavelets φj,k,1 have sufficiently many vanishing derivatives and
sufficiently many vanishing moments.

For an L2 function h, let βI = 〈h, φI〉 denote the wavelet coefficients, and define the
Besov seminorm of order 1/2 by

‖h‖
Ḃ

1/2
2,2

=

(∑
I

|βI · 2j/2|2
)1/2

.
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It measures roughly the energy stored in the 1/2-order fractional derivative.

Lemma 9 ∫ 2π

0
‖Rg(·, θ)‖2

Ḃ
1/2
2

dθ ≤ C · ‖g‖22. (10.12)

The Besov Ḃ1/2
2,2 seminorm allows to control the wavelet coefficients of the Radon trans-

form, via the following

Lemma 10 Let ψ+
j,k be the fractionally-differentiated Meyer Wavelet (10.10). Suppose that

h is a function supported in [−1, 1] and obeying ‖h‖2 < ∞ as well as ‖h‖
Ḃ

1/2
2

< ∞. For
each m > 0 we have a constant Cm so that

|〈ψ+
j,k, h〉| ≤ Cm · ‖h‖Ḃ1/2

2,2

· (|k| − 2j)−m+ . (10.13)

The last three lemmas quickly yield (10.9). Indeed, we have

∑
i,`,ε

|aλ|2 =
∫ 2π

0
|〈ψ+

j,k, Rg(·, θ)〉|2dθ

≤ C2
m ·

∫ 2π

0
‖Rg(·, θ)‖2

B
1/2
2,2

dθ · (|k| − 2j)−2m
+

= C · ‖g‖22 · (|k| − 2j)−2m
+ .

For m > 1, we have of course∑
|k|≥2·2j

(|k| − 2j)−2m
+ ≤ Cm · 2−(2m−1)j

and so ∑
|k|≥2·2j

∑
i,`,ε

|aλ|2 ≤ C ′m · ‖g‖22 · 2−(2m−1)j

completing the proof of (10.9). It remains, of course, to prove the lemmas.
Proof of Lemma 8. Let τλ(t, θ) denote the antipodally symmetrized nonorthogonal

tensor wavelets (ψ+
j,k(t)w

ε
i,`(θ)+ψ

+
j,k(−t)wεi,l(θ+π))/2; see [22] for details. The ortho-ridgelet

coefficients aλ are given by analysis of the Radon transform via

aλ = [Rg, τλ].

Let now Aj,k(θ) = 〈ψ+
j,k, Rg(·, θ)〉. Then if λ = (j, k; i, `, ε),

aλ =
∫ 2π

0

(
Aj,k(θ)wεi,`(θ) +Aj,1−k(θ)wεi,`(θ + π)

)
/2 dθ

=
∫ 2π

0

(
Aj,k(θ)wεi,`(θ) +Aj,k(θ + π)wεi,`(θ + π)

)
/2 dθ

=
∫ 2π

0
Aj,k(θ)wεi,`(θ) dθ (10.14)

where the identities ψ+
j,k(−t) = ψ+

j,1−k(t) and Rg(−t, π + θ) = Rg(t, θ) were used. Let I(j)
denote the set of (i, j, ε) tuples obeying i ≥ j, 0 ≤ ` < 2i and ε ∈ {0, 1} if i = j and ε = 1 if
i > j. Each collection of periodized wavelets {wεi,` : (i, `, ε) ∈ I(j)} makes an orthonormal
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basis for L2(dθ). The corresponding Parseval relation for each such basis says that for each
L2(dθ) function A(θ) ∑

I(j)

|〈A,wεi,`〉|2 =
∫ 2π

0
|A(θ)|2dθ.

Applying this to each A(θ) = Aj,k(θ)

∑
I(j)

|aλ|2 =
∫ 2π

0
A2
j,k(θ)dθ

(10.11) follows upon taking note that in (10.11), the intended range of the sum over i, `, ε
is exactly I(j).

Proof of Lemma 9. In fact, more is true: the two sides are equivalent to within fixed
constant multiples.

Consider the 1/2-order L2-Sobolev norm defined in the frequency domain by

‖h‖
Ẇ

1/2
2

=
∫
|ĥ(λ)|2|λ|dλ;

We have the very well-known identity∫ 2π

0
‖Rg(·, θ)‖2

Ẇ
1/2
2

dθ =
1

2π2
· ‖g‖22,

which is proved as follows:

1
2

∫ 2π

0
‖Rg(·, θ)‖2

Ẇ
1/2
2

dθ =
1
2

∫ 2π

0

∫ ∞
−∞
|R̂g(λ, θ)|2|λ|dλ

=
∫ 2π

0

∫ ∞
0
|ĝ(ξ(r, θ))|2rdrdθ

=
∫
|ĝ(ξ)|2dξ =

1
4π2
· ‖g‖22,

where ξ(λ, θ) = (λ cos(θ), λ sin(θ)). The second equality derives from the projection-slice
theorem [41], which says that the 1-dimensional Fourier transform in t of Rg(t, θ) gives the
1-dimensional radial slice ĝ(ξ(λ, θ)) of the Fourier transform as a function of λ.

Because 1-dimensional wavelets provide a biorthogonal decomposition of the 1-dimensional
fractional differentiation operator, standard applications of ideas similar to those in Section
3 will show that the homogeneous Besov norm Ḃ

1/2
2,2 is an equivalent norm to Ẇ 1/2

2 . This
norm equivalence is of course very well known and could very well be derived by other
approaches; see [53]. The result (10.12) follows.

Proof of Lemma 10. We begin by relabeling the index j, k, which stays constant
throughout the proof, as j′, k′, allowing j, k to be used in the proof as free variables.
Obviously

〈ψ+
j′,k′ , h〉 =

∑
I

βI〈ψ+
j′,k′ , φI〉,

so we reduce matters to the study of the sequence
(
〈ψ+

j′,k′ , φI〉
)
I
. We will establish later

below the existence, for each m > 0, of a constant Cm so that

|〈ψ+
j′,k′ , φI〉| ≤ Cm · 2

j′/2 · 2−|j′−j| 32 · (1 + 2j
′ · d(tj′,k′ , I))−m. (10.15)
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Assuming this, and letting
I = {I : |βI(h)| 6= 0}

we have

|〈ψ+
j′,k′ , h〉| =

∑
I

(βI2j/2)(〈ψ+
j′,k′ , φI〉2

−j/2)

≤
(∑
I
β2
I 2j
)1/2

·
(∑
I
|〈ψ+

j′,k′ , φI〉|
22−j

)1/2

= ‖h‖
Ḃ

1/2
2,2

·
(∑
I
|〈ψ+

j′,k′ , φI〉|
22−j

)1/2

. (10.16)

Let now Ī denote the support interval of φI . When it is necessary to specify the corre-
sponding values of j, k, we write Īj,k. For j ≥ j0 set K(j) = {k : Īj,k ∩ [−1, 1] 6= ∅}. Then
because supp(h) ⊂ [−1, 1], all members of I with scale index j must have position index
k ∈ K(j). Hence∑

I
2−j |〈ψ+

j′,k′ , φI〉|
2 ≤ C2

m

∑
j

∑
k∈K(j)

2−j ·
(
2j
′ · 2−3|j−j′| · (1 + 2j

′
d(tj′,k′ , Īj,k))−2m

)
≤ C2

m

∑
j

2−2|j−j′| ∑
k∈K(j)

(1 + 2j
′
d(tj′,k′ , Īj,k))−2m

Now if j ≥ j′ then from 2j
′
d(tj′,k′ , Ī) ≥ (|k′| − 2j

′
)+, valid for |k| > 2 · 2j′ ,

∑
k∈K(j)

(1 + 2j
′
d(tj′,k′ , Īj,k))−2m ≤ 2j · C

∫ 1

−1
(1 + 2j

′ |tj′,k′ − u|)−2mdu

≤ 2j · C ′(|k′| − 2j
′
)−2m
+

and similarly for j0 ≤ j ≤ j′, with 2j
′

replacing 2j on the extreme right-hand side. Hence,∑
I

2−j |〈ψ+
j′,k′ , φI〉|

2 ≤ C ·
∑
j

2−2|j−j′| · 2max(j,j′)(|k′| − 2j
′
)−2m
+

≤ C ·
∑
j

2−|j
′−j|(|k′| − 2j

′
)−2m
+

= C ′′ · (|k′| − 2j
′
)−2m
+ . (10.17)

Combining (10.17) and (10.16) and relabeling j′, k′ 7→ j, k completes the proof of (10.13),
modulo the argument for (10.15).

Returning to (10.15), we begin with the remark that, with D = d
dt and Dn having the

obvious meaning for n = 0,±1,±2, etc., we have

‖Dnψ+
j′,k′‖L∞(Ī) ≤ Cm · (1 + 2j

′
d(tj′,k′ , Ī))−m · 2j′n, n = 0,±1,±2, . . . .

To obtain (10.15), assume first that j0 ≤ j ≤ j′. Then, setting n = 2,

|〈ψ+
j′,k′ , φI〉| ≤ ‖D−2ψ+

j′,k′‖L∞(Ī) · ‖D2φI‖L1

= Cm · 2−j
′ · (1 + 2j

′
d(tj′,k′ , Ī))−m · 23/2j

= Cm · (1 + 2j
′
d(tj′,k′ , Ī))−m · 2j′/2 · 2−|j−j′|3/2 (10.18)
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Assume now that j ≥ j′. Then

|〈ψ+
j′,k′ , φI〉| ≤ ‖D2ψ+

j′,k′‖L∞(Ī) · ‖D−2φI‖L1

= Cm · 23j′ · (1 + 2j
′
d(tj′,k′ , Ī))−m · 2−5/2j

= Cm · (1 + 2j
′
d(tj′,k′ , Ī))−m · 2j′/2 · 2−|j−j′|5/2. (10.19)

Combining the last two displays (10.18)-(10.19) yields (10.15) and completes the proof of
the lemma.

10.1.5 Localization in Ridge Scale

We now show that distant scales can be ignored.

Lemma 11 For each m > 0, there is Cm > 0 so that on each fixed square Q∑
λ: |j−(s+1)|>4

|αQ,λ|2 ≤ Cm 2−2sm ‖Dsf‖22. (10.20)

Proof. We renormalize the dyadic squareQ to unit scale. The (Q,λ) curvelet coefficient
of an object f is given by

αQ,λ = 〈Dsf, ψQ,λ〉
= 2s〈Dsf, TQ(wρλ)〉
= 2−s〈wT−1

Q (Dsf), ρλ〉.

Define the renormalized objects hQ = T−1
Q (Dsf) and gQ = w T−1

Q (Dsf) = w · hQ. Then

αQ,λ = 2−s 〈gQ, ρλ〉. (10.21)

Define for general integer j the dyadic Fourier corona Ξj = {ξ : |ξ| ∈ [2j , 2j+1]} and the
main corona Ξ∗s = {ξ : |ξ| ∈ [2s−1, 2s+3]}. Then, of course, Ξ∗s combined with the dyadic
coronae with j < s− 1 and j > s+ 2 will cover the frequency plane.

The point of the terminology main corona is the following. We recall that Ds is the
convolution by Ψ2s = 24sΨ(22s·) and Ψ̂2s is supported on the dyadic corona {ξ : |ξ| ∈
[22s−1, 22s+3]}. A simple change of variables gives

T−1
Q (Dsf) = T−1

Q (Ψ2s ∗ f) = Ψs ∗ T−1
Q f,

(note the change of subscript) and therefore the Fourier transform of hQ = T−1
Q (Dsf) is

supported on the main corona Ξ∗s.
Even for gQ the dominant action happens near the main corona. In fact, the Fourier

transform of gQ does decay rapidly away from the main corona Ξ∗s. Indeed, for any m ≥ 0,
we have

|ĝQ|2(ξ) ≤ C 2s (1 + d(ξ,Ξ∗s))
−(2m+1) ‖hQ‖22. (10.22)

To see this, note that the relation gQ = whQ implies, on the Fourier side, the convolution

ĝQ(ξ) =
∫
ŵ(ξ − ξ′) ĥQ(ξ′) dξ′.
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Here ŵ is a rapidly decaying function, i.e. for each m > 0 |ŵ(ξ)| ≤ Cm(1 + |ξ|)−(m+1). A
proof of (10.22) is simply obtained by a change of variables followed by an argument similar
to Lemma 6.

Now for ξ ∈ Ξj , and |j − s| > 3, d(ξ,Ξ∗s) ≥ 2max(s,j)−1. Hence,∫
Ξj

|ĝQ|2(ξ′) dξ′ ≤ C 2s 2−max(s,j)(2m+1) ‖hQ‖22
∫

Ξj

dξ′

≤ C 2s 2−max(s,j)(2m+1) 22 max(s,j) ‖hQ‖22
≤ C 2−2 max(s,j)(m−1) ‖hQ‖22.

Finally, the elements ρλ of the ridgelet orthobasis are compactly supported in frequency,
namely ρ̂λ(ξ) = 0 whenever |ξ| /∈ Ξj−1 ∪ Ξj . Hence we have∑

λ: |j−(s+1)|>4

|〈gQ, ρλ〉|2 ≤
∑

j: |j−(s+1)|>3

∫
Ξj

|ĝQ|2(ξ′) dξ′

≤
∑

j: |j−(s+1)|>3

C 2−2 max(s,j)(m−1) ‖hQ‖22

≤ C ‖hQ‖22

 ∑
j≤s−3

2−2s(m−1) +
∑
j≥s+5

2−2j(m−1)


≤ C ′ ‖hQ‖22 (2−2s(m−2) + 2−2s(m−1)).

To get (10.20) we now take m appropriately large.

10.2 Sparsity of the curvelet coefficients

In this subsection we prove (7.4). In a separate paper [9], we derived the following upper
bound on the number of coefficients whose absolute value exceeds an arbitrary cut-off η > 0:

#{µ ∈Ms, |αµ| ≥ η} ≤ C


0 2s ≥ η−2/3

ε−2/3 η−2/9 ≤ 2s ≤ η−2/3

23s 22s ≤ η−2/9

.

A simple rescaling argument shows that

#{µ ∈Ms, |αµ| ≥ 2sε} ≤ C


0 2s ≥ ε−2/5

2−2s/3ε−2/3 ε−2/11 ≤ 2s ≤ ε−2/5

23s 22s ≤ ε−2/11

.

From the last inequality, one easily deduces that∑
µ∈Ms

min(|αµ|2, 22sε2) ≤ 24s/3ε4/3.

Hence, ∑
µ∈N (ε)

min(|αµ|2, 22sε2) ≤
∑

s: 2s≤ε−2/5

∑
µ∈Ms

min(|αµ|2, 22sε2)

≤ C
∑

s: 2s≤ε−2/5

24s/3ε4/3

≤ C ε4/5,

which is what needed to be shown.
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10.3 Cardinality of N (ε)

We now establish (7.5) . For a scale s ≥ s0, the number of coefficients that one keeps per
dyadic square Q equals the cardinality of Λs which is bounded by C 23s. The subset N (ε)
counts a maximum of O(22s) of squares Q at such scale and, therefore,

#{µ ∈ N (ε) s.t. Q ∈ Qs} ≤ C 25s.

Then, of course,

#N (ε) =
∑

s: 2s≤ε−2/5

#{µ ∈ N (ε) s.t. Q ∈ Qs} ≤ C ε−2,

which proves (7.5).

10.4 Remarks

The above estimates complete the proof of Theorem 5.
Because the parameter m may be chosen arbitrarily large in (10.8), it is not difficult to

show that the cardinality can be bounded by Cδε−8/5+δ, for any δ > 0.
Finally, the argument may be adapted to other choices of s0. The description of N (ε)

would involve a different and somewhat more complicated selection of parameters for small
values of the scale s, s0 ≤ s ≤ sε.
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