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Abstract

This paper describes newly invented multiscale transforms known under the name
of the ridgelet [6] and the curvelet transforms [9, 8]. These systems combine ideas
of multiscale analysis and geometry. Inspired by some recent work on digital Radon
transforms [1], we then present very effective and accurate numerical implementations
with computational complexities of at most N logN .

In the second part of the paper, we propose to combine these new expansions with
the Total Variation minimization principle for the reconstruction of an object whose
curvelet coefficients are known only approximately: quantized, thresholded, noisy coef-
ficients, etc. We set up a convex optimization problem and seek a reconstruction that
has minimum Total Variation under the constraint that its coefficients do not exhibit a
large discrepancy from the the data available on the coefficients of the unknown object.

We will present a series of numerical experiments which clearly demonstrate the
remarkable potential of this new methodology for image compression, image recon-
struction and image ‘de-noising.’
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1 Introduction

1.1 The Multiscale/Multiresolution Revolution

The title of this special issue is “Image and Video Coding Beyond Standards.” Claiming
that the ‘standards,’ at least in image coding, have evolved over the last few years is quite an
understatement. In fact, the last two decades or so witnessed an extraordinary revolution
in the way we process, store, visualize and transmit digital data; a revolution one might
call the triumph of the multiscale approach.

The pioneering work of Burt and Adelson [5] on Laplacian pyramids, of Galand [19]
on quadrature mirror filters, and of Grossman and Morlet [20] paved the way to the pow-
erful concept of multiresolution, which today is –perhaps– best known under the generic
name of wavelets. Multiresolution provides us with tools to describe mathematical objects
such as functions, signals and more generally datasets at different level of resolutions. The
celebrated orthogonal wavelet pyramids of Mallat and Meyer [24] and Daubechies’ con-
struction of compactly supported wavelets [14] are among the greatest accomplishments of
this generation of researchers who moved the field away from classical Fourier analysis.

Today, multiscale/multiresolution ideas permeate many fields of contemporary science
and technology. In signal processing, they led to convenient tools to navigate through large
datasets, to transmit compressed data rapidly, to remove noise from signals and images,
and to identify crucial transient features in such datasets. By now, wavelets have made
their way into our livelihood as they were included in JPEG 2000, the new still-picture
compression standard, and are being considered for future generations of standard video
coders such as the ‘MPEG family.’

1.2 New Multiscale Geometric Transforms

In this paper, we will describe some ideas which take the multiscale approach in a whole new
direction, perhaps justifying the title “Beyond Standards.” Indeed, Candès and Donoho [10,
9, 7] argue that the concept of multiscale is much broader than what classical multiresolution
ideas or wavelets imply. They developed new systems of representation which are very
different from wavelet-like systems. These systems combine ideas of multiscale analysis
with ideas of geometric features and structures.

For instance, a newly invented representation is the ridgelet system [6] which allows the
representation of arbitrary bivariate functions by superpositions of elements of the form

a−1/2ψ((x1 cos θ + x2 sin θ − b)/a); (1.1)

ψ is an oscillatory univariate function (a one one-dimensional wavelet if you wish), a > 0
is a scale parameter, θ is an orientation parameter, and b is a location scalar parameter.
Thus, ridgelets occur at all scales, locations, and orientations. Unlike wavelets, ridgelets
are non-local as they are infinitely elongated in the codirection θ. In the context of image
processing where one would restrict objects to ‘live’ on the unit square, ridgelet functions
are roughly of unit length and have arbitrary width, so that one would have all possible
aspect ratios. If we think of wavelets as ‘fat’ points, then we may view ridgelets as ‘fat’
lines.

Motivated by the problem of finding efficient representation of objects with discontinu-
ities along curves and of compression of image data, Candès and Donoho introduced yet
another representation system, the curvelet transform. Like ridgelets, curvelets occur at all
scales, locations, and orientations. However, whereas ridgelets have unit length, curvelets
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occur at all dyadic lengths and exhibit an anisotropy increasing with decreasing scale like
a power law. Section 2 will introduce the curvelet transform. In short, curvelet obey a
scaling relation which says that the width of a curvelet element is about the square of its
length; width ∼ length2. Conceptually, we may think of the curvelet transform as a multi-
scale pyramid with many directions and positions at each length scale, and needle-shaped
elements (or ’fat’ segments) at fine scales. [8, 9] build tight frames of curvelets (γµ) obeying

f =
∑

µ

〈f, γµ〉γµ, (1.2)

and
||f ||2L2(R2) =

∑
µ

|〈f, γµ〉|2. (1.3)

1.3 Curvelets and Image Coding

New transforms may be very significant for practical concerns. For instance, the potential
for sparsity of wavelet expansions led the way to very successful applications in areas such as
signal/image compression or denoising and feature extraction/recognition. The numerical
examples presented in this paper will make clear that the curvelet transform is very relevant
for image processing applications. Beyond those examples, there is now substantial amount
of evidence supporting our claim:

• Sparse Representations by Curvelets. The curvelet representation is far more effective
for representing objects with edges than wavelets or more traditional representations.
In fact, [8] proves that curvelets provide optimally sparse representations of C2 objects
with C2 edges. In general, improved sparsity leads to improved compression perfor-
mance, at least at high compression rates. Hence, transform coders based on the
quantization of curvelet coefficients may benefit from provably superior asymptotic
properties.

• Sparse Component Analysis. In computer vision, there has been an interesting series
of experiments whose aim is to describe the ‘sparse components’ of images. Of special
interest is the work of Field and Olshausen [27] who set up a computer experiments
for empirically discovering the basis that best represents a database of 16 by 16 image
patches. Although this experiment is limited in scale, they discovered that the best
basis is a collection of needle shaped filters occurring at various scales, locations
and orientations. The reader will find a stimulating discussion about the connection
between data analysis and harmonic analysis in [17]. We will not detail this connection
and simply wonder, with Donoho, at the striking resemblance between curvelets,
which derive from mathematical analysis, and these empirical basis elements arising
from data analysis.

• Numerical Experiments. Donoho and Huo [21] study sparse decompositions of images
in a dictionary of waveforms including wavelet bases and multiscale ridgelets. They
apply the Basis Pursuit (BP) in this setting and obtain sparse syntheses by solving

min ‖a‖`1 subject to f =
∑
m

amϕm,

where (ϕm) is our collection of waveforms. BP gives an ‘equal’ chance to every
member of the dictionary and yet, Donoho and Huo observe that BP preferably
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selects multiscale ridgelets over wavelets, except for possibly the very coarse scales
and the finest scale. This experiment seems to indicate that multiscale ridgelets are
better for representing image data than pre-existing mathematical representations.
There is a natural connection with our previous point which showed that empirically
selected bases do not look like wavelets.

1.4 New Partial Synthesis Rules: Total-Variation Minimization

Let T be a linear transformation such as the Fourier, wavelet, ridgelet or curvelet transforms,
for example, or the amalgamation of a few of these. Suppose that one is given partial
information about f in the sense that only a subset of the coefficients Tf are known or
approximately known. To make things concrete, we might consider a ‘compression scenario’
where the partial information consists in the value of the m-largest coefficients, possibly
subject to quantization error. The classical approach to partial synthesis consists in setting
the other coefficients to zero and inverting the transform T .

There are, of course, more sophisticated approaches. For instance, in the case where
T is the wavelet transform, [4] develops a wavelet embedded predictive image coder; the
idea is to use statistical properties of natural scenes to predict the absolute value of neigh-
boring wavelet coefficients. In a somewhat similar spirit, [13] attempts to model the joint
probability density of the wavelet coefficients using Hidden Markov Models and exploit this
model for efficient partial synthesis.

In this paper, we introduce a very different idea based on the minimization of a com-
plexity penalty. Of special interest is the Total Variation norm ‖f‖BV , which is roughly
equal to the integral of the Euclidean norm of the gradient. We introduce some notations.
We let (Tf)µ∈M be the coefficient sequence of an object f and let M ′ denote a subset of
the coefficient index M . Suppose we are given possibly approximate values θ̃µ of (Tf)µ, for
µ ∈M ′. We propose the following rule for partial synthesis:

min ‖g‖BV subject to |θµ(g)− θ̃µ| ≤ eµ, µ ∈M ′. (1.4)

In a nutshell, given a vector of tolerance (eµ) – some of the eµ’s may be zero – we seek a
solution f∗ with minimum Total Variation norm whose coefficients θµ(g) are within eµ of
θµ. In passing, note that equation (1.4) may be seen as a very interesting special case of
the more general rule

min J(g), subject to Tg ∈ Cf , (1.5)

where J(g) is a functional measuring the complexity of the fit, e.g. ‖g‖BV , and Cf is a
convex set of constraints depending on available information about f , e.g. |Tg − θ̃| ≤ e.

Reconstruction based on (1.4) were briefly suggested in [29] and have been independently
introduced by Durand and Froment [18] in the context of wavelet-based signal denoising.
This paper will deploy (1.4) in our newly constructed geometric multiscale systems, namely
ridgelets and curvelets. We will present a series of preliminary experiments which will clearly
demonstrate the potential for image compression, image reconstruction and ‘de-noising.’

1.5 Contents

Section 2 below will review the basic components of both the ridgelet and curvelet construc-
tions. In Section 3, we will present a strategy for developing approximate digital transforms
which can be used effectively on n by n Cartesian arrays. Section 4 will discuss new partial
synthesis rules introduced in Section 1.4. In Section 5, we will present applications in the
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area of image reconstruction and specifically edge-preserving tomography. Finally, we will
close with some remarks and future directions for research.

2 The Ridgelet Transform

There are several ridgelet transforms. For instance, Candès introduced both a continuous
and a discrete ridgelet transform. Letting ψa,θ,b(x) being a ridgelet as in (1.1), he defines a
ridgelet coefficient by

Rf(a, θ, b) =
∫
f(x1, x2)ψa,θ,b(x1, x2) dx1dx2.

Then provided that ψ is oscillatory, [6] shows that we have a stable and concrete reproducing
formula just as we have a stable and concrete reproducing formula for the wavelet transform.
He then develops a discretization of the continuous transform and develops ridgelet frames.
We give an overview of the main components of the discrete transform.

• Dyadic scale: a = 2−j , j ≥ 0.

• Dyadic location: b = k · 2−j , k ∈ Z.

• Angular resolution proportional to scale: θ = 2πδ · ` · 2−j .

In an image processing context, this work suggests taking line-like measurements on
image data and shows how to combine these measurements to reconstruct an image.

In dimension 2, Donoho [16] introduced a new orthonormal basis whose elements he
called ‘orthonormal ridgelets.’ We quote from [10]: “Such a system can be defined as
follows: let (ψj,k(t) : j ∈ Z, k ∈ Z) be an orthonormal basis of Meyer wavelets for L2(R) [22],
and let (w0

i0,`(θ), `=0, . . . , 2i0−1; w1
i,`(θ), i ≥ i0, `=0, . . . , 2i−1) be an orthonormal basis

for L2[0, 2π) made of periodized Lemarié scaling functions w0
i0,` at level i0 and periodized

Meyer wavelets w1
i,` at levels i ≥ i0. (We suppose a particular normalization of these

functions). Let ˆψj,k(ω) denote the Fourier transform of ψj,k(t), and define ridgelets ρλ(x),
λ = (j, k; i, `, ε) as functions of x ∈ R2 using the frequency-domain definition

ρ̂λ(ξ) = |ξ|−
1
2 ( ˆψj,k(|ξ|)wε

i,`(θ) + ˆψj,k(−|ξ|)wε
i,`(θ + π))/2 . (2.1)

Here the indices run as follows: j, k ∈ Z, ` = 0, . . . , 2i−1 − 1; i ≥ i0, i ≥ j. Notice the
restrictions on the range of ` and on i. Let λ denote the set of all such indices λ. It turns
out that (ρλ)λ∈Λ is a complete orthonormal system for L2(R2).”

Figure 1 represents an object and that ridgelet which at a given scale, best correlate
with this object. Observe that the ridgelet is aligned with the discontinuity.

3 The Curvelet Transform

We now briefly discuss the curvelet frame; for more details, see [8]. The construction
combines several ingredients, which we briefly review

• Ridgelets, a method of analysis very suitable for objects which are discontinuous across
straight lines.
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Figure 1: A Ridgelet

• Multiscale Ridgelets, a pyramid of analyzing elements which consists of ridgelets renor-
malized and transported to a wide range of scales and locations.

• Bandpass Filtering, a method of separating an object out into a series of disjoint
scales.

The last section introduced ridgelets and we first briefly discuss multiscale ridgelets and
bandpass filtering. We then describe the combination of these three components. There is
a difference between this construction and the one given in [8] at large scales.

3.1 Multiscale Ridgelets

Think of ortho ridgelets as objects which have a “length” of about 1 and a “width” which
can be arbitrarily fine. The multiscale ridgelet system renormalizes and transports such
objects, so that one has a system of elements at all lengths and all finer widths.

The construction begins with a smooth partition of energy function w(x1, x2) ≥ 0,
w ∈ C∞0 ([−1, 1]2) obeying

∑
k1,k2

w2(x1 − k1, x2 − k2) ≡ 1. Define a transport operator,
so that with index Q indicating a dyadic square Q = (s, k1, k2) of the form [k1/2s, (k1 +
1)/2s) × [k2/2s, (k2 + 1)/2s), by (TQf)(x1, x2) = f(2sx1 − k1, 2sx2 − k2). The Multiscale
Ridgelet with index µ = (Q,λ) is then

ψµ = 2s · TQ(w · ρλ)

In short, one transports the normalized, windowed orthoridgelet.
Letting Q∫ denote the dyadic squares of side 2−s, we can define the subcollection of

Monoscale Ridgelets at scale s:

Ms = {(Q,λ) : Q ∈ Qs, λ ∈ Λ}
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It is immediate from the orthonormality of the ridgelets that each system of monoscale
ridgelets makes tight frame, in particular obeying the Parseval relation∑

µ∈Ms

〈ψµ, f〉2 = ‖f‖2
L2

It follows that the dictionary of multiscale ridgelets at all scales, indexed by

M = ∪s≥1Ms

is not frameable, as we have energy blow-up:∑
µ∈M

〈ψµ, f〉2 = ∞. (3.1)

The Multiscale Ridgelets dictionary is simply too massive to form a good analyzing set. It
lacks inter-scale orthogonality – ψ(Q,λ) is not typically orthogonal to ψ(Q′,λ′) if Q and Q′

are squares at different scales and overlapping locations. In analyzing a function using this
dictionary, the repeated interactions with all different scales causes energy blow-up (3.1).

The construction of curvelets solves this problem by in effect disallowing the full richness
of the Multiscale Ridgelets dictionary. Instead of allowing all different combinations of
‘lengths’ and ‘widths’, we allow only those where width ≈ length2.

3.2 Subband Filtering

Our remedy to the ‘energy blow-up’ (3.1) is to decompose f into subbands using standard
filterbank ideas. Then we assign one specific monoscale dictionary M∫ to analyze one
specific (and specially chosen) subband.

We define coronae of frequencies |ξ| ∈ [22s, 22s+2], and subband filters ∆s extracting
components of f in the indicated subbands; a filter P0 deals with frequencies |ξ| ≤ 1. The
filters decompose the energy exactly into subbands:

‖f‖2
2 = ‖P0f‖2

2 +
∑

s

‖∆sf‖2
2.

The construction of such operators is standard [32]; the coronization oriented around powers
22s is nonstandard – and essential for us. Explicitly, we build a sequence of filters Φ0

and Ψ2s = 24sΨ(22s·), s = 0, 1, 2, . . . with the following properties: Φ0 is a lowpass filter
concentrated near frequencies |ξ| ≤ 1; Ψ2s is bandpass, concentrated near |ξ| ∈ [22s, 22s+2];
and we have

|Φ̂0(ξ)|2 +
∑
s≥0

|Ψ̂(2−2sξ)|2 = 1, ∀ξ.

Hence, ∆s is simply the convolution operator ∆sf = Ψ2s ∗ f .

3.3 Definition of Curvelet Transform

Assembling the above ingredients, we are able to sketch the definition of the Curvelet
transform. We let M ′ consist of M merged with the collection of integral triples (s, k1, k2, e)
where s ≤ 0, e ∈ {0, 1}, indexing all dyadic squares in the plane of side 2s > 1.

The curvelet transform is a map L2(R2) 7→ `2(M ′), yielding Curvelet coefficients (αµ :
µ ∈M ′). These come in two types.
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At coarse scales we have wavelet coefficients.

αµ = 〈Ws,k1,k2,e, P0f〉, µ = (s, k1, k2) ∈M ′\M

where each Ws,k1,k2,e is a Meyer wavelet, while at fine scale we have Multiscale Ridgelet
coefficients of the bandpass filtered object:

αµ = 〈∆sf, ψµ〉, µ ∈Ms, s = 1, 2, . . . .

Note well that for s > 0, each coefficient associated to scale 2−s derives from the subband
filtered version of f – ∆sf – and not from f .

Several properties are immediate;

• Tight Frame:
‖f‖2

2 =
∑

µ∈M ′

|αµ|2.

• Existence of Coefficient Representers (Frame Elements): There are γµ ∈ L2(R2) so
that

αµ ≡ 〈f, γµ〉.

• L2 Reconstruction Formula:
f =

∑
µ∈M ′

〈f, γµ〉γµ.

• Formula for Frame Elements: for s ≤ 0, γµ = P0φs,k1,k2 , while for s > 0,

γµ = ∆sψµ, µ ∈ Qs. (3.2)

In short, fine-scale curvelets are obtained by bandpass filtering of Multiscale Ridgelets
coefficients where the passband is rigidly linked to the scale of spatial localization.

• Anisotropy Scaling Law: By linking the filter passband |ξ| ≈ 22s to the scale of
spatial localization 2−s imposes that (1) most curvelets are negligible in norm (most
multiscale ridgelets do not survive the bandpass filtering ∆s); (2) the nonnegligible
curvelets obey length ≈ 2−s while width ≈ 2−2s. In short, the system obeys approx-
imately the scaling relationship

width ≈ length2.

Note: it is at this last step that our 22s coronization scheme comes fully into play.

• Oscillatory Nature. Both for s > 0 and s ≤ 0, each frame element has a Fourier
transform supported in an annulus away from 0.

4 Digital Transforms

4.1 Ridgelet and Radon Transforms

There is an intimate relationship between the Radon transform and the ridgelet transform.
In some sense, ridgelet analysis is a kind of wavelet analysis in the Radon domain.
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Let ψa,θ,b be a ridgelet

ψa,θ,b(x1, x2) = a−1/2ψ (−x1 sin θ + x2 cos θ − b)/a) (4.1)

and define a ridgelet coefficient by

Rf(a, θ, b) =
∫
f(x1, x2)ψa,θ,b(x1, x2) dx1dx2. (4.2)

A simple change of variables shows that

Rf(a, θ, b) =
∫
Rf(t, θ)a−1/2ψ((t− b)/a) dt,

where Rf is the Radon transform [15] defined by

Rf(t, θ) =
∫
f(x1, x2)δ(−x1 sin θ + x2 cos θ − t) dx1dx2. (4.3)

In short, the ridgelet transform is precisely the application of a 1-dimensional wavelet
transform to the slices of the Radon transform where the angular variable θ is constant and
t is varying.

A similar connection exists with the orthonormal ridgelet transform as well. Letting
∆+ be the fractional derivative operator

∆+h =
1
2π

∫ ∞

−∞
|ω|1/2ĥ(ω)eiωt dω, (4.4)

we introduce the fractionally differentiated Radon transform defined as

R̃ = (∆+ ⊗ I)R, (4.5)

where R is the Radon transform (4.3), and with ∆+ acting on t and the identity I on θ. It
is well-known [15] that R̃ is an isometry

[R̃f, R̃g] = 〈f, g〉, (4.6)

where the notation [·, ·] denote the normalized inner product in L2(dt dθ)

[F,G] =
1
4π

∫
F (t, θ)G(t, θ) dtdθ.

Let (ρλ) be an orthobasis of ridgelets (2.1) and Wλ be the tensor wavelet basis

Wλ(t, θ) = (ψj,k ⊗ wε
i,`)(t, θ), λ = (j, k; i, `, ε), (4.7)

where the range of λ is as in (2.1). With these notations, it is an easy calculation to show
that

R̃ρλ = PRWλ,

where PRWλ is the antipodally-symmetrized version of Wλ

(PRWλ)(t, θ) = (Wλ(t, θ) +Wλ(−t, θ + π)) /2.

Then
θλ := 〈f, ρλ〉 = [R̃f, PRWλ] (4.8)
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In addition, we may pass the operator (∆+ ⊗ I) to PRWλ and obtain

θλ = [Rf, (∆1/4 ⊗ I)PRWλ].

This gives
θλ = [Rf, (∆1/4 ⊗ I)PRWλ] = [Rf, PRW+

λ ], (4.9)

with
W+

λ = ψ+
j,k ⊗ wε

i,`, ψ+
j,k = ∆+ψj,k. (4.10)

The identities (4.8)– (4.9) also justify our interpretation of ridgelet analysis as some kind
wavelet analysis in the Radon domain.

4.2 Strategy

Following upon the previous section, a sensible strategy for a digital ridgelet transform
would involve the development of digital wavelet and Radon transforms. Once, we have a
digital ridgelet transform, digital curvelet transforms follow rather easily, see [30]. Digital
wavelet transforms are now routine. However, developing a highly accurate and fast digital
Radon transform is challenging as making sense of geometrical concepts such as line integrals
on discrete Cartesian arrays is not straightforward. Indeed, these difficulties together with
the importance of the Radon transform in many problems of scientific interest spurred an
extensive literature on this subject.

Many of the proposed methods rely on the Projection Slice Theorem which states that
the Radon transform may be obtained by inverting the 2-dimensional Fourier transform
along radial lines

f̂(−λ sin θ, λ cos θ) =
∫
Rf(θ, t)e−iλtdt.

Continuing on this line of thinking, one would need to introduce a collection Ξ of ‘polar
samples’ and evaluate the Fourier transform

F (ξ) =
∑
n1,n2

f(n1, n2)e−i(ξ1n1+ξ2n2)

at each point ξ ∈ Ξ. For a polar grid of size N , a naive evaluation would require of the order
of N2 operations which is prohibitive for large values of N . Another issue is that image
data are often given a Cartesian grids and classical polar grids may not be well-adapted to
this data structure.

In this paper, we follow a recent approach developed in [1] which goes by the name of
Pseudo-Polar FFT. The Pseudo-Polar FFT defines a Rectopolar grid which is adapted to
Cartesian grids and introduces an interpolation scheme allowing a fast evaluation of the
Fourier transform on that grid.

4.3 Pseudo-Polar FFT

The approach [1] starts with a Rectopolar grid also known under the name of the Concentric
Squares grid. Given a Cartesian array, (k1, k2), −n/2 ≤ k1, k2 < n/2, we define 2n radial
lines joining pairs of symmetric points from the boundary of the square. Figure 2 shows
radial lines in Rectopolar coordinates; we will refer to these as Rectopolar lines and it will
be convenient to distinguish between basically vertical and horizontal lines as illustrated on
our Figure. We then introduce the Rectopolar grid ξp

`,m where ` indexes Rectopolar lines,
m the position on that line, and p is a gender token equal to 1 if the Rectopolar line is
basically horizontal, and 2 otherwise. Define
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Figure 2: Rectopolar Lines

• ξ1`,m as the intersection of the `th ‘vertical’ Rectopolar line with the mth horizontal
line (see 2(a)), and

• ξ2`,m is the intersection of the `th ’horizontal’ Rectopolar line with the mth vertical
line (see 2(b)).

The meaning of the index ` is as follows: the coordinates of the points ξp
`,m are given by{

ξ1`,m = (2`m/n,m),
ξ2`,m = (m, 2`m/n),

− n/2 ≤ `,m < n/2. (4.11)

From now on, we will let Ξ denote the full Rectopolar grid. This grid is pictured on (3).
Obviously, the sampled angular directions are not equispaced; the sampling is a little

finer near the ‘corners.’ To be specific, let f̂(ξ) be the Fourier transform of f(x) and put

f̂p
`,m = f̂(2πξp

`,m/n).

With these notations and for p = 1, say, f̂1 are sampled values of f̂(−λ tan θ, λ) on the
Cartesian grid

λ = m, tan θ = `/n, −n/2 ≤ `,m < n/2.

A similar statement applies to f̂2. The sampling is irregular in θ but equispaced in the
slope tan θ.

4.4 Interpolation

In this section, we work with Cartesian array f(n1, n2), 0 ≤ n1, n2 ≤ n − 1. The FFT
of (f(n1, n2)) gives Fourier samples f̂(k1, k2) on the Cartesian grid k = (k1, k2),−n/2 ≤
k1, k2 < n/2 and we now need to address the problem of resampling the Fourier transform
on the Pseudo-Polar grid Ξ. Interpolating the Fourier transform is a delicate matter as this
is a very oscillatory object.
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Figure 3: Rectopolar Grid

We view f̂(k1, k2) as samples from the trigonometric polynomial F defined by

F (ω1, ω2) =
n−1∑
n1=0

n−1∑
n2=0

f(n1, n2)e−i(ω1n1+ω2n2). (4.12)

Then

f̂(k1, k2) =
n−1∑
n1=0

n−1∑
n2=0

f(n1, n2) e−i2π(k1n1+k2n2)/n = F (2πk1/n, 2πk2/n). (4.13)

Consider the restriction of this two-dimensional trigonometric polynomial to the line ω2 =
2π ·m/n

Pm(ω) := F (ω,
2πm
n

). (4.14)

Of course, Pm is a trigonometric polynomial of degree n which might be expressed as

Pm(ω) =
n−1∑
u=0

cu e
−iuω.

Now, because Pm is the restriction of F , its coefficients are given by

cn1 =
n−1∑
n2=0

f(n1, n2)e−i 2πm
n

n2 , 0 ≤ n1 ≤ n− 1.

We then need to evaluate this polynomial at the points

ω` = α · `, α = (2π/n) · 2m/n, −n/2 ≤ ` < n/2,

see (4.11). This gives

f̂1
`,m = Pm(α · `) =

n−1∑
u=0

cue
−iαu`.

12



In short, our interpolation calls for the resampling of a one-dimensional trigonometric
polynomial at a sampling rate, which is below the Nyquist rate, except at the ‘borders’
m = −n/2.

Introduce the Fractional Fourier Transform (FrFT) of a vector x

x̂k = (Fαx)k =
n−1∑
j=0

xje
−iα j k, 0 ≤ k ≤ n− 1.

For fixed p and m, the sample values of (f̂1
`,m)` may, of course, be interpreted as an FrFT.

Fix m, then
f̂1

k−n/2,m = (Fαd)k, 0 ≤ k ≤ n− 1,

where d is the vector
du = cu e

iαun/2, 0 ≤ u ≤ n− 1.

Bailey and Swartztrauber [2] have proposed an algorithm to compute the FrFT of a
vector of length n in O(n log n) multiplications and additions. Therefore, for each hori-
zontal line or vertical line m, the evaluation of f̂p

`,m requires a number of multiplications
and additions of the order n log n. There are a total of 2n such lines and, therefore, the
complexity of the Pseudo-Polar FFT is N logN for a Cartesian array of size N = n2.

This approach is that taken in [1] and we reiterate its main property; the Pseudo-Polar
FFT gives an exact evaluation of F (4.12) at each ξ ∈ Ξ.

4.5 Interpretation: Slant Stack Transform

Define the Slant Stack transform of an object f as follows:

(Sf)(t, θ) =
∫
f(u, t+ u tan θ) du, −π/4 ≤ θ ≤ π/4. (4.15)

That is, the Slant Stack is a line integral along Lt,θ = {(u, t+ u tan θ), u ∈ R}. There is a
similar definition for θ in the range [π/4, 3π/4], namely,

(Sf)(t, θ) =
∫
f(u cot θ + t, u) du, π/4 ≤ θ ≤ 3π/4. (4.16)

Not surprisingly there is a relationship between the one dimensional Fourier transform of S
and the two-dimensional Fourier transforms of f . Indeed, the following equality holds for
θ ∈ [−π/4, π/4]

(Sf)(t, θ) =
1
2π

∫ ∫
f̂(−λ tan θ, λ)eiλt dλ. (4.17)

In other words, inverting the one dimensional Fourier transform along the Rectopolar line
(λ tan θ, λ), λ ∈ R gives the Slant Stack. Of course, the Slant Stack transform is also
directly related to the Radon transform as

Sf(t, θ) = cos θ ·Rf(t cos θ, θ).

We let T denote the Pseudo-Polar FFT which maps a Cartesian array (f(n1, n2)) into
f̂p

`,m = F (ξp
`,m) (4.12) and F−1

1 be the one-dimensional inverse Fourier transform applied to
each of the 2n Rectopolar line. The identity (4.17) suggests that the composition F−1

1 T is
a discrete analog of the Slant Stack transform for Cartesian arrays. In fact, it is possible
to define a discrete Slant Stack Sn transform with this property

Sn = F−1
1 T. (4.18)
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4.6 Discrete Slant Stack

Put
(Snf)(u, θ) =

∑
u

f̃(u, v + u tan θ)

where for a fixed u ∈ {−n/2, . . . , n/2 − 1}, the function f̃(u, t), t ∈ R interpolates the
discrete vector f(u, v), v = −n/2, . . . , n/2 − 1. Let u be fixed and let g(−n/2), g(−n/2 +
1), . . . , g(n/2−1) be the sample values of f(u, v). We pad this vector with two zero-vectors
of size n/2 each, thereby defining g(v) = 0 for v ∈ {−n, . . .−n/2−1} and v ∈ {n/2, . . . n−1}.
Let G(t), −n ≤ t < n be that trigonometric polynomial of degree 2n− 1 such that

G(v) = g(v), v = −n, . . . , n− 1.

Then G is given by
G(t) =

∑
k

ĝke
iπkt/n

or equivalently,
G =

∑
v

g(v)K2n(t− v)

where K2n is the Dirichlet kernel

K2n(t) = e−iπt/2n sinπt
2n sin(πt/2n)

.

Then [1] shows that the identity (4.18) holds with this special choice of trigonometric
interpolant.

Note that we used zero-padding to avoid periodic effects. Had we ignored this, our
trigonometric interpolation would warp lines around the square as it assumes periodicity.
This point is illustrated on Figure 4(a).

The padding gives a rectangular array of size n by 2n or 2n by n depending on whether
we consider integrals on lines whose angle θ with the horizontal axis is in the range θ ∈
[−π/4, π, 4] or θ ∈ [π/4, 3π, 4]. Define the discrete Slant Stack grid as follows

tk = k, −n ≤ k < n, tan θ` = `/n, −n/2 ≤ ` < n/2. (4.19)

Then letting Sn be the Discrete Slant Stack which maps

f(n1, n2) 7→ (Snf)(tk, θ`),

[1] proves that Sn obeys (4.18). Figure 4 provides a graphical representation of the identity
(4.18): for each θ`, taking the inverse FFT along the Rectopolar lines (we have 2n equispaced
points) gives the Slant Stack for t = −n, . . . , n − 1. In short, the discrete Slant Stack Sn

takes a Cartesian array of size n by n and returns an array of size 2n by 2n in two batches
of size 2n by n each.

On Figure 4, we chose to display ‘long’ rectangles merely reflecting the size of the zero-
padded Cartesian arrays. We hope that this does not introduce confusion in the reader’s
mind as this figure seems to indicate that we only consider slopes in the range [−1/2, 1/2]
and (−∞,−2) ∪ (2,∞). The correct geometrical interpretation of the Pseudo-Polar FFT
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(a) Slant Stack
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(−N/2, −N)

(b) Polar FFT

Figure 4: Slant Stack and Polar FFT

is that we oversample the Rectopolar grid by a factor 2, namely, we evaluate F (ω1, ω2) at
the samples (ω1, ω2) =

(
π
n ·

`m′

n , π
n ·m

′
)
,

(ω1, ω2) =
(

π
n ·m

′, π
n ·

`m′

n

)
,

− n/2 ≤ ` < n/2, −n ≤ m′ < n. (4.20)

In comparison, the sampling suggested by Figure 3 is of the type (ω1, ω2) = (2π/n ·
`m/n, 2πn ·m), where −n/2 ≤ `,m < n/2.

4.7 Wavelet Transforms

If one wishes to calculate a table of discrete ridgelet coefficients as in (4.2), we simply apply
a discrete wavelet transform to the columns of Snf which gives the array of coefficients
α = (αp

j,k(`)); this is an array of size 2n by 2n in two batches of size 2n by n each.
The discrete implementation of the orthonormal ridgelet transform proceeds a little

differently. With the notations of the last section we compute the ‘fractionally’ differentiated
Slant Stack

S+
n f = F−1DTf,

where D and T are respectively the density weighting and Pseudo-Polar FFT matrices.
We then apply discrete wavelet transforms both to the rows (t-variable) and columns (θ-
variable) of S+

n f . The result is an array of coefficients α = (αp
j1,k1;j2,k2

) with (j1, k1) and
(j2, k2) denoting the scale and location variables of the wavelet transforms in the t-variable
and θ-variable respectively.
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4.8 Pseudo-Ridgelets

By substituting the Radon transform with the Slant Stack, we slightly changed the definition
of the ridgelet transform. The discrete transform computes a discrete analog of the pseudo-
ridgelet transform defined as follows:

R̃f(a, θ, b) = cos θ ·
∫
f(x1, x2) a−1/2ψ

(
−x1 tan θ + x2 − b

a

)
dx1dx2

=
∫
Sf(t, θ)a−1/2ψ((t− b)/a) dt,

for θ ∈ (−π/4, π/4) and likewise for θ ∈ (π/4, 3π/4). In other words, with ψaθ,θ,b as in
(4.1), we have

R̃f(a, θ, b) =
√

cos θ · 〈f, ψaθ,θ,b〉, aθ = a/ cos θ.

We close this section with an important point. The discrete ‘pseudo-ridgelets,’ i.e. the
Riesz representers of the discrete transform, are not ridge functions. They are not of the
form ρ(a1n1 + a2n2).

4.9 Inversion

We now briefly discuss the strategy for inverting the Pseudo-Polar FFT. A naive approach
would consist in interpolating the sample values of Pm(α·`) back to Pm(`); that is, one would
determine the coefficients of Pm and apply the one-dimensional FFT to find Pm(`). The
problem with this approach is that it is ill-posed. In fact, this is not really an interpolation,
but rather, an extrapolation problem. For small values of α, tiny perturbations of the
samples P (α`) near the origin may cause large variations away from the origin.

Let L be the Cartesian to polar conversion which maps f̂(k1, k2) into f̂p
`,m so that

with the notations of this section, T = LF2, where F2 is the two-dimensional FFT. The
linear mapping L corresponds to a change of coordinates and has eigenvalues decaying
like a power-law. Indeed, the continuous analog maps f̂ into g(r, θ) = f̂(r cos θ, r sin θ).
Multiplying g with the square root of the Jacobian, i.e. r1/2, gives an isometry and we then
introduce a density weighting matrix D which mimics this renormalization. Recall that for
samples f̂p(`,m), m may be thought of as a radial index and ` an angular or slope index.
Put

f̃p(`,m) = f̂p(`,m)
√
wp

`,m, wp
`,m =

{ |m|
2n2 , m 6= 0
1

8n2 , m = 0
(4.21)

We refer the reader to [1] for a discussion of these weights. In the vocabulary of numerical
linear algebra, D is a preconditioning matrix so that DL is nearly an isometry.

We then invert the Cartesian to Polar conversion y = Lx using a classical iterative
numerical algorithm. Starting with x(0) = 0, we inductively define

r(n) = D(y − Lx(n−1))
x(n) = λ(n)L∗r(n) + x(n−1)

The matrix DL is well conditioned, see the discussion in [1]. In our experiments and for
arrays with dimensions ranging from 32 by 32 to 1024 by 1024, we need about 4 iterations
to achieve a relative error of order 10−4.
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5 New Nonlinear Synthesis Rules

5.1 Osher’s Criticism

Roughly speaking, there are two main lines of thinking in the field of mathematical image
processing. The first is inspired by recent development in Computational Harmonic Analysis
(CHA) such as wavelets, wavelet packets, local cosine bases, etc. The second school has
a very different viewpoint, namely, that of partial differential equations (PDE). In recent
years, following upon the work of Mumford and Shah, the latter school pioneered new
concepts and processing methods which became widely popular. We single out anisotropic
diffusion, mean curvature motion, and Total-Variation denoising to name just a few of these
ideas. Morel and Solimini [26] give an excellent review of the main results and developments
in this field. Our intention is not to oppose both the PDE and CHA approaches. Rather,
we merely observe that there exist two distinct sources of inspiration.

Despite their great achievements, image processing methods based on CHA have been
thus far received with skepticism by the latter group. This is especially true in signal or
image denoising. In fact, we have often heard that Total-Variation approaches are vastly
superior to CHA methods for recovering edges from noisy data. For instance, Osher and
his colleagues tend to oppose CHA methods arguing that, to put it mildly, everything
that has to do with computational harmonic analysis tends to produce artificial oscillations
near discontinuities even though the original signal/image may be flat on both sides of the
discontinuity; they would refer to this phenomenon as a ‘pseudo-Gibbs phenomenon.’ The
terminology ‘side-band effect’ seems more appropriate.

We will not argue with this objection. Rather, we will develop nonlinear rules for partial
synthesis which are not subject to the above phenomenon. These nonlinear rules combine
CHA ideas and functionals in common use in the PDE community.

5.2 Minimum Total Variation Synthesis

Roughly speaking, the Total Variation of a function is the integral of the Euclidean norm
of the gradient

‖f‖BV =
∫
|∇f(x)| dx. (5.1)

For discrete data fi,j , 1 ≤ i, j ≤ n, this would take the form

‖f‖BV =
∑
i,j

√
|(δ1f)i,j |2 + |(δ2f)i,j |2,

where D1 is the finite difference (δ1f)ij = fi,j − fi−1,j and similarly for δ2.
Letting T be a linear transform, we propose solving

min
f
‖g‖BV subject to |(Tg − b)µ| ≤ eµ. (5.2)

From now on, we will take T to be the curvelet transform as to make the discussion more
concrete.

As suggested in the introduction we may deploy this synthesis rule in a variety of
contexts. We give two examples:

• Compression. Here, we think of b as being quantized values of Tf . We then use
(5.2) to synthesize a ‘decompressed’ image. In this case, the vector of tolerance would
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depend on the properties of the Quantizer. For instance, in the case of a scalar
quantizer with quantization q, we may want to use something like e = q/2, or q.

• Noise Removal. We wish to recover an object f from noisy data

yi,j = fi,j + σzi,j , zi,j i.i.d. N(0, 1). (5.3)

Here we think of b as the noisy coefficients of f , b = Ty, with bµ ∼ N(θµ, σ
2
µ). We

may use a thresholding rule to identify a set M ′ of significant coefficients, |yµ| ≥ λσµ,
say, and set a vector of tolerance eµ = αµ · σµ, where αµ may take different values
depending on whether or not the index µ corresponds to a significant coefficient; e.g.
αµ = 1 for µ ∈M ′ and αµ = λ for µ /∈M ′.

In [28], the authors proposed a minimum Total Variation approach for denoising image
data. Given data of the form (5.3), they suggest solving

min
g
‖g‖TV subject to ‖g − y‖2

`2/n
2 = σ2. (5.4)

The approach (5.2) is very different and combines thresholding rules and minimum variation
ideas. Unlike classical thresholding rules, it does not set the nonsignificant coordinates
to zero. Instead, (5.2) will typically input small values to cancel oscillations near the
discontinuities and eliminate ripples while preserving the strong features of the image such
as edges.

The formulation (5.2) was suggested in [29]. Other researchers proposed to combine
Total Variation with the wavelet transform, see [18] and more recently [23]. For related
ideas although in a very different direction, check [12].

5.3 A Tantalizing Perspective

Consider the following model of images with edges: F is the class of C2 objects which may
be discontinuous along C2 edges. Then, the thresholding of curvelet coefficients is provably
optimal for estimating objects of that class as this procedure yields near-minimax rates of
convergence over F , see [11] for details.

Conjecture 1. The combined curvelet and minimum Total Variation approach (5.2)
is asymptotically nearly optimal over F .

We view the challenge of proving/disproving Conjecture 1 as intellectually significant.
Indeed, if Conjecture 1 were true, this would establish the existence of a procedure enjoying
nearly optimal statistical properties, and giving visually pleasing practical results at the
same time.

In a different direction, however, we have accumulated evidence pointing to the fact that
unlike curvelet-based procedures, TV-denoising is far from being optimal in such setting
which leads to a second conjecture.

Conjecture 2. The Minimum Total Variation approach (5.4)–[28] achieves markedly
suboptimal asymptotic rates in that setting. These rates are comparable with those attainable
by wavelet shrinkage procedures.

5.4 Current Implementation Strategy

Although the minimization problem (5.2) is convex, one must frankly admit that it looks
daunting. The issue is the dimension of the problem; (5.2) is an optimization in Rn2

with
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of the order of n2 log n constraints. When n = 512, say, these dimensions are indeed very
large!

A common approach for solving problems of the type (5.2) is to the so-called gradi-
ent descent method with projection; one iteratively alternates unconstrained minimization
problems and orthogonal projections onto the set of feasible constraints. This approach
is realistic whenever the transform T is orthogonal so that the projection may be easily
determined, see [18]. When T is non-orthogonal, this projection will, in general, be the
solution of a Quadratic Problem (QP) and each iteration may be very expensive. More
generally, we will also have to rule out many other iterative methods such as Interior Points
methods because of the sheer size of the problem and the cost of evaluating the constraints
Tg.

5.5 Dual Problem

Our approach for solving (5.2) or better said, approximately solving (5.2), will rely on
duality theory. Let L be the Lagrangian

L(f,Λ) = ‖f‖BV + ΛTKf, (5.5)

where Λ is a vector of Lagrange multipliers

Λ = (Λ±) ≥ 0, Kf = ±(Tf − b− e).

The dual problem is of the form
sup
Λ

G(Λ) (5.6)

where
G(Λ) = inf

f
L(f,Λ). (5.7)

For strictly feasible constraints, strong duality holds and one way to go about it is to find
a saddle point (f∗,Λ∗) of the Lagrangian L(f,Λ)

inf
f

sup
Λ
L(f,Λ) = L(f∗,Λ∗) = sup

Λ
inf
f
L(f,Λ) = G(Λ∗). (5.8)

The Usawa algorithm approaches this problem with an iterative procedure. From Λ0 ≥ 0,
inductively define

L(fn,Λn) = min
f
L(f,Λn) (5.9)

Λn+1 = P (Λn + δKfn), (5.10)

where P is the projection on the positive cone, PΛ = max(Λ, 0), and δ is a positive
parameter.

The Usawa algorithm is, in fact, a gradient ‘descent’ with projection algorithm applied
to the dual problem. The word ‘descent’ is to be taken cautiously as one seeks to maximize
–and not minimize– the dual function G. In our case, this procedure is relatively simple
as our optimization problem reduces to a sequence of unconstrained optimization problems
(5.9). Unconstrained Total-Variation minimization problems such as (5.9) are now classical.
We will apply this idea to a modified version of the Lagrangian.

From our viewpoint, the dual approach presents several advantages: first, the projection
step is straightforward; second, it only requires one evaluation of the curvelet transform
per iteration; and third, we never need to invert the curvelet transform.
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5.6 Practical Issues

5.6.1 Stability and Convergence

Various theorems are known about the convergence of the Usawa algorithm to the saddle-
point of the Lagrangian. Most of these results, however, assume α-convexity of the func-
tional to minimize. The Total Variation norm is not α-convex as it grows only linearly at
infinity.

In addition to convergence issues, we also need to address stability. Indeed, the uncon-
strained minimization problem

min
f
L(f,Λ) = min

f
‖f‖BV + ΛTKf

may be unstable in the following sense: there might be directions along which the decay of
the linear constraints is faster than the growth of the Total-Variation functional!

To get around these difficulties, we proposed to penalize the Lagrangian with a small
quadratic term. We substitute the sequence of unconstrained problems (5.7) with a sequence
of penalized minimization problems

min
fn

L(f,Λn) + γn‖f‖2, (5.11)

where γn is a sequence of positive parameters decaying to 0. The penalty restores α-
convexity. Under suitable conditions on the sequence γn, the Usawa algorithm with (5.11)
in place of (5.7) can be shown to converge to a saddle-point (f∗,Λ∗) of the Lagrangian
(5.5), see [3].

5.6.2 Burn-in

The speed of convergence depends, of course, upon the initial choice of parameters Λ0. The
closer Λ0 to Λ∗ the better. Finding good guesses of the initial parameter values is more an
art than anything else, although there are some guiding principles.

Let J(f) be the Total Variation norm ‖f‖BV . At the saddle-point, the derivative of the
Lagrangian with respect to f vanishes

(∇fL)(f?,Λ?) = 0

and, therefore,
−(∇J)(f?) = K∗Λ?. (5.12)

Let f0 be an initial guess of the solution, e.g. obtained after applying the inverse transform
to b (5.2). In the applications considered, f0 might be the object obtained after inversion
of the quantized coefficients, or the reconstruction obtained via classical thresholding. The
optimum f∗ is in some sense close to f0 and (5.12) suggests finding Λ such that

−(∇J)(f0) = K∗Λ = T ∗Λ+ − T ∗Λ−

as this would –hopefully– give a parameter value ‘close’ to Λ?. We use the near orthogonality
of T and set

Λ+
0 − Λ−0 = −T (∇J)(f0), Λ+

0 = max(−T (∇J)(f0), 0). (5.13)

In our numerical experiments, the choice (5.13) turns out to be a good guess although
it is possible to refine it further by using a priori knowledge about the side-band effects
we wish to eliminate and analyzing the curvelet transform of (∇J)(f0). Because of space
limitations, we do not detail these refinements.
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5.6.3 Practice

From a practical viewpoint only four or five iterations are truly needed if one selects a
reasonable initial guess. In our numerical experiments, we did not observe much change in
the sequence (fn) after the first five iterations. After only one or two iterations, most of
the wrinkles (side-band effects) near the discontinuities are removed while the sharpness of
edges is preserved.

6 Numerical Experiments

6.1 Ridgelet Partial Reconstruction

The first experiment compares the quality of wavelet, ridgelet and TV-post-processed
ridgelet partial reconstructions. In this experiment, the original figure is a picture of a
512 by 512 sliced-Gaussian. We use only the 100 largest coefficients for each reconstruc-
tion. Unlike the wavelet reconstruction, the ridgelet reconstruction of the discontinuity is
near-perfect. On the ridgelet picture, however, one can still distinguish oscillations near
the edge. The minimum Total Variation ridgelet reconstruction erases those side-bands
and enhances the ‘decompressed’ object. The ridgelet-TV reconstruction and the original
figure are nearly indistinguishable.

We may term the remaining approximation error ‘pixelization error.’ This a kind of error
which does not have anything to do with real physical phenomena but rather, occurring
because of issues such as discretization and pixelization.

6.2 Noisy Radon Inversion

The second experiment is about reconstructing an image from noisy Radon data. This is a
problem of considerable interest in the literature of medical imaging (tomography).

The data for this example are simulated (we do not have access to real datasets). We
start with the famous Logan-Shepp phantom and calculate the sinogram, i.e. the discrete
Radon transform of the phantom. We use the tools introduced in Section 4 to compute
this sinogram. The sinogram is then contaminated with Gaussian white noise. Inverting
the discrete Radon transform gives the noisy picture shown in 7(a). The noise is colored;
that is, noisy pixel values are correlated and the noise level increases with frequency.

We then apply level dependent thresholding to the wavelet and curvelet coefficients. The
noise level in each coordinate is estimated by Monte-Carlo simulations. The choice of the
threshold parameter is 3 times the noise level except for the last dyadic subband where it is 4
times the noise level. We also applied cycle-spinning to remove some artifacts which are well-
known to occur with wavelet thresholding procedures. Cycle spinning is a kind of translation
invariant thresholding rule; this technique computes several individual reconstructions by
applying shifts to the noisy data and averages them out –after applying the reverse shifts, of
course. We applied cycle-spinning in both cases. (To be exact, the wavelet reconstruction
is an average over 64 shifts while we used only 16 shifts for the curvelet reconstruction.)
The results are presented on Figures 7, 8 and 9. Finally, these figures also display the
combined curvelet and minimum TV reconstruction; this reconstruction does not involve
any cycle-spin. With the notations of Section 5, we used a vector of tolerance with eµ = σµ

for the significant coefficients and eµ = 4σµ for the others.
Details are shown on Figures 8 and 9. Edges are very sharp in both the curvelet and

the curvelet-TV reconstructions. The curvelet-TV reconstruction is free of artifacts and
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Figure 5: Partial Reconstructions of a Sliced-Gaussian
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Figure 6: Details
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Wavelets Curvelets Curvelets and TV
PSNR 32.23 34.46 35.2

Table 1: Table of PSNR values for the recontruction of the Logan-Shepp phantom.

side-bands are removed as evidenced on Figure 10, which shows the middle horizontal
scanline of the phantom. The noisy and reconstructed scanlines are plotted on Figures
10(a), 10(b) and 10(c). Figure 10(d) shows a superposition of both the true and the
curvelet-TV reconstructed scanlines. The reconstructed line is very close to the truth.

Figures 7, 8 and 9 show some residual plots. These pictures clearly demonstrate that
curvelets are able to extract meaningful signal at very high-frequency. This is possible
because unlike wavelets, curvelets correlate very well with signal structures (edges) at high
frequency, yielding improved signal to noise ratio.

Finally, we also report the PSNR for each method which we interpret as an ‘objective’
measure of performance. The values are given in the table below. Curvelet reconstructions
exhibit a higher PSNR. We report here a PSNR of 35.2 because it is that of the results
presented in the various figures. We would like to point out that for other iteration counts
and initial choice of parameters, we have been able to obtain PSNRs as high as 37.

6.3 Denoising

After these encouraging results on synthetic examples, the last experiment is about ‘de-
noising’ a real photograph. The original image is contaminated with Gaussian white noise
and the processing steps are nearly the same as in the previous experiments (same parameter
values). We do not apply cycle-spinning. The results and details are shown on Figures 11
and 12, respectively.

In some sense, this numerical example downplays the objection raised near the beginning
of Section 5.1. It is certainly true that on sharp geometrical objects such as a white square
on black background, one might perceive spurious oscillations when applying CHA methods.
However, on more, complicated and realistic imagery such as photographs with textures,
these artifacts are often barely visible.

7 Perspective

7.1 Second Generation of Curvelets

We believe that there is a simpler way to construct tight frames of curvelets. This con-
struction does not use ridgelets.

7.1.1 Tight Frames

For each j ≥ 0, consider a family of orthogonal and compactly supported windows χj,`

obeying
|χ0(ξ)|2 +

∑
j,`

|χj,`(ξ)|2 = 1. (7.1)
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Figure 7: Reconstruction of the Logan-Shepp Phantom
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Figure 8: Details
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Figure 9: Details
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Figure 10: Scanline Plots
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Figure 11: Denoising Barbara
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We will use the windows χj,` to localize the Fourier transform near wedges of length 22j

and width 2j . In polar coordinates we let

χj,`(ξ) = w(2−2j |ξ|) ν(2jθ − π`),

and put χ0(ξ) = w0(|ξ|). Then, the decomposition (7.1) would hold provided

|w0(|ξ|)|2 +
∑

j

|w(2−2j |ξ|)|2 = 1, (7.2)

and
2j+1−1∑

`=0

|ν(2jθ − π`)|2 = 1. (7.3)

As for Meyer wavelets [25], we will assume that w is supported on [2π/3, 8π/3] and ν on
[−5π/6, 5π/6], say. The window χj,0 is then localized near the ’horizontal’ wedge

[π22j ≤ |ξ| ≤ π22(j+1)]× [−π/2 · 2−j ≤ θ ≤ π/2 · 2−j ]. (7.4)

For each `, χj,` is obtained from χj,0 by applying a rotation. It is not difficult to check that
for each j ≥ 1, the support of χj,0 is contained in a rectangle of length 2πδ122j and width
2πδ22j with δ1 = 1 +O(2−j) and δ2 = 10π/9.

This type of tiling of the frequency plane was introduced by Fefferman and used very
successfully thereafter to study properties of Fourier Integral Operators, see Chapter 9 in
[31] and references therein.

For the special pair (j, 0), we introduce the Cartesian lattice k = (δ−1
1 ·k12−2j , δ−1

2 ·k22−j)
with δ1, δ2 as before. Then for each pair J = (j, `), we let kJ be the lattice rotated by an
angle equal to θJ = π · ` · 2−j . Formally,

kJ = RJ k, RJ =
(

cos θJ − sin θJ

sin θJ cos θJ

)
.

Observe that with these notations, χj,`(ξ) = χj,0(R∗Jξ).
Define

γ̂µ(ξ) =
1√
δ1δ2

2−3j/2 e−i〈kJ ,ξ〉χj,`(ξ) µ = (j, `, k). (7.5)

With the same notation as in Section 3, we also define coarse scale curvelets γ̂µ0 as being
proportional to the modulated blobs e−ikξχ0(ξ). Then with obvious notations, (γµ′)µ′∈M ′

is a tight frame: ∑
µ′

|〈f, γµ′〉|2 = ‖f‖2
L2(R2), f =

∑
µ′

〈f, γµ′〉γµ′ . (7.6)

This merely follows from the fact that 1
2π
√

δ1δ2
eik

Jξ is an orthonormal basis of square inte-
grable functions defined over a rectangle containing the support of χj,`. Then,∑

kJ

|〈f, γµ〉|2 =
1

(2π)4
∑
kJ

|〈f̂ , γ̂µ〉|2 =
1

(2π)2

∫
|f̂(ξ)|2 |χj,`(ξ)|2dξ,

and (7.6) follows from (7.1).
In a more refined construction, one may want to merge symetric wedges, namely, χj,` and

χj,`+2j thanks to the symmetry χj,`(−ξ) = χj,`+2j (ξ). Details will appear in a forthcoming
paper.
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7.1.2 Space-Side Picture

Next, we let θj,` be the inverse Fourier transform of 1√
δ1δ2

2−3jχj,`(ξ). Then

γµ(x) = 23j/2 θj,`(x− kJ). (7.7)

The relationship χj,`(ξ) = χj,0(R∗Jξ) gives

γµ(x) = 23j/2 θj,0(R∗Jx− k).

Now, the envelope of θj,0 is concentrated near a vertical ridge of length about 2−j and width
2−2j . Define θ(j) by

θj,0(x) = θ(j)(Djx)

where Dj is the diagonal matrix

Dj =
(

22j 0
0 2j

)
. (7.8)

In other words, the envelope θ(j) is supported near a disk of radius about one, and owing to
the fact that χj,0 is supprted away from the axis ξ1 = 0, θ(j) oscillates along the horizontal
direction. In short, θ(j) resembles a 2-dimensional wavelet of the form ψ(x1)ϕ(x2) where ψ
and ϕ are respectively father and mother-gendered wavelets. Equation (7.7) becomes

γµ(x) = 23j/2 θ(j)(Dj(R∗Jx− k)). (7.9)

Hence, we defined a tight frame of elements which are obtained by anisotropic dilations,
rotations and translations of a collection of unit-scale oscillatory blobs. We list a few of
their properties:

• The Parabolic Scaling (7.8) yields an Anisotropy Scaling Law: the system is well-
localized in space and obeys approximately the relationships

length ≈ 2−j , width ≈ 2−2j

and, therefore,
width ≈ length2.

• Directional Sensitivity: the elements are oriented in the co-direction θJ = π · ` · 2−j .
Identifying the curvelet length 2−j with the scale, we see that there are about 2j

directions at scale 2−j .

• Oscillatory Nature. Curvelets elements display oscillatory components across the
‘ridge’.

In short, this system exhibit all the geometrical and multiscale features of the curvelet
transform. We believe that this is new system is an alternative to the curvelet construction
reviewed in Section 3. This leads to a last conjecture.

Conjecture 3. This new system and ‘classical’ curvelets enjoy nearly the same opti-
mality properties for representing C2 images with C2 edges [9, 8].

We will conclude this section with a brief summary of the main points of the construction
of new tight frames of curvelets:

• We decompose the frequency domain into dyadic annuli |x| ∈ [2j , 2j+1).

• We decompose each annulus into wedges θ = π` · 2−j/2. That is, we divide at every
other scale as shown on Figure 13.

• We use oriented local Fourier bases on each wedge.
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Figure 13: Split Every Other Two

7.2 Ridgelet Packets?

The previous section paves the way to a wealth of new multiscale systems. By arbitrary
segmentation of dyadic coronae, we can design tight frames with arbitrary aspect ratios at
arbitrary scales. Splitting at every scale would essentially give tight frames of ridgelets,
at every other scales, tight frames of curvelets, and no splitting essentially yields wavelet
frames.

The reader familiar with the literature on wavelet packets, for example, may see that
there is an opportunity to develop trees of tight frames by applying Recursive Dyadic
Partitioning ideas to each frequency corona. Along this line of research, it would be of
interest to develop fast algorithms à la Coifman and Wickerhauser for searching sparse
decompositions in these trees.

7.3 3 Dimensions

This paper focused on new multiscale representations of bivariate functions and their po-
tential for practical applications in image processing. However, most of the ideas, tools and
algorithms we presented in this paper may easily be extended to higher dimensions, and
especially the tree-dimensional case. We may develop 3D ridgelets, 3D curvelets and 3D
digital transforms. This may lead to the development of convenient tools to represent, an-
alyze, store and transmit 3 dimensional datasets. The situation where the third dimension
is time as in digital video would be of special interest.
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7.4 Epilogue

We have shown some of our numerical results to prominent researchers in the PDE-based
image processing community. These results have been received with a lot of enthusiasm
and we take this as a sign of encouragement.
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